
ISSA Proceedings 1998 – Dividing
By Zero – And Other Mathematical
Fallacies

In this paper I shall discuss a fallacy involving dividing by
zero.   And  then  I  shall  more  briefly  discuss  fallacies
involving  misdrawn  diagrams  and  a  fallacy  involving
mathematical induction, I discuss these particular fallacies
because each of them seems at first – and seemed to me
myself at one time – to be a counterexample to a theory of

mine.  The  One  Fallacy  Theory  says  that  every  real  fallacy  is  a  fallacy  of
equivocation, of playing on some sort of ambiguity. But these particular fallacies
do not seem to involve ambiguity, and yet they do seem to be real fallacies.[i] Let
me begin with the dividing-by-zero fallacy.

It goes as follows:
1. Let a = b
2. So a2 = ab (multiply each side by a)
3. So a2 – b2 = ab – b2 (subtract b2 from each side)
4. So (a + b)(a – b) = b(a – b) (factoring)
5. So a + b = b (cancelling (a – b) on each side)
6. So 2b = b (since a = b)
7. So 2 = 1 (cancelling b on each side).

Now this argument appears to be a counterexample to my theory. Each step is
stated in unambiguous algebraic terminology. The invalid move takes us from an
unambiguously true equation 4 to an unambiguously false equation 5 by a move of
cancelling a -b which is unambiguously though not obviously a division by zero.
There seems to be no ambiguity.

My theory then seems to imply that there is no real fallacy; we do not have an
invalid step which appears, by virtue of a covering ambiguity, to be valid, but
rather a naked mistake with no appearance of goodness. A naked mistake is not a
true fallacy.
But surely, the argument is a real fallacy. For it passes the phenomenological test.
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The first time I myself saw this argument in a book, I went through it carefully
looking for the wrong step. And I could not find it, at least not just by going
through the argument step by step. It looked like a proof to me, and at a time
when I  knew  there had to be  something  wrong and was,  in an intellectually
serious way, looking for the mistake!
So clearly the argument is a real fallacy. It therefore seems a counterexample to
my theory.
Now in trying to defend my theory, I think as follows. If a serious person is taken
in by an invalid argument A/ .. B and ‘A’ and ‘B’ are not ambiguous, perhaps there
is some other reasoning in the person’s mind. Perhaps he thinks that A implies C
and C implies B, and it is the interpolated term C which is ambiguous. Another
person who accepts A/ .. B may accept it for a different reason, using a different
confusion, say A/ .. D/ .. B.

I therefore ask: Why did I myself think the argument dividing by zero was valid
step by step?

It is often said that people divide by zero, as in our example, because you can
usually divide and people just forget about the special case of zero. I have never
liked this kind of explanation. How can one just forget about special cases? If the
rule is that you can always divide unless the would-be divisor is zero, how can one
apply this rule without determining whether the would-be divisor is zero?
At any event, the explanation about forgetting the special case did not apply to
me. I didn’t forget the special case. I had never heard of any such special case. I
learned from studying this  very  fallacy  that  one can’t  divide  by  zero.  I  was
astounded to find that one couldn’t always divide! I thought that you could always
divide and that I knew you could always divide.

Now here too there is a popular explanation about why people think they can
always divide. The explanation is that people overgeneralize: since you can almost
always divide, we overgeneralize and thin we can divide in the case of zero also. I
do not like this explanation. Such inductive reasoning could easily lead a rational
person to think that one can always divide, probably. However, mathematical
knowledge is not about what is probably true but about what is proven. I thought
I knew that one can always divide, that I had seen a proof of this.
Now  after  examining  the  argument  and  not  finding  the  mistaken  step,  I
substituted the concrete number 5 for a and b. The equations then became: Let 5
= 5. So 25 = 25. So 25 – 25 = 25 – 25. Upon factoring, 10 { 0 = 5 { 0. Cancelling,



10 = 5. So 10 = 5. So 2 = 1. And here it is obvious where the mistake is. The
equation 10 { 0 = 5 { 0 balances, but 10 = 5 doesn’t.
And reflecting on this wrong move, we see that its general form is x { 0 = y { 0/ ..
x = y. So if we can divide by zero, then all numbers are equal. This proves that we
cannot divide by zero. Of course, when I saw this, I distrusted my reasoning and
went and looked in a math book to assure myself that it was really true that you
can’t divide by zero.

Having thus decided that  you can’t  divide by zero,  I  started to consider my
reasons for thinking you can divide by zero. How can it be that we can’t divide by
zero? After all, I first thought, multiplication is always well-defined. But division is
defined as the inverse of multiplication. Doesn’t it follow that division is always
well-defined as well? I knew immediately that there was something wrong with
this reasoning. In the natural numbers, it is always possible to add but one cannot
always  subtract,  say,  7  from 3.  Yet  subtraction  is  defined as  the  inverse  of
addition. How then can it be that one can’t always subtract?

To  understand this  fallacy  more  clearly,  let  me state  my argument  in  more
sophisticated terminology. In modern logic, definite descriptions are well-formed
expressions whether they refer or not. Thus, in a Russellian sense, ‘the king of
France’ is a well-defined expression. And so, for any x, is ‘(¡ z)(x = z { 0)’. But the
latter is the definition of ‘x/o’, which is thus well-defined, in a Russellian sense.
For Frege, however, a referring expression is not well-defined unless it is proven
that  it  actually  succeeds in  referring  to  something.  Mathematicians speak of
functions as being ‘well-defined’ in Frege’s, not Russell’s sense. If x/o were well-
defined in Frege’s sense, then division by zero would be possible. So my argument
involved an equivocation, on two different meanings of ‘well-defined’.

When, years ago, I fell into the dividing-by-zero fallacy, I found that one can’t
divide by zero, and asked myself ‘how can that be?” I then went through the ‘well-
defined’ problem as just rehearsed. However, when I saw that there were two
different concepts of ‘well-defined’ involved, I did not feel that this point really
addressed my perplexity, for I thought I had somewhere seen a proof that division
always was well-defined, even in Frege’s sense. Hadn’t I seen a proof that you can
always divide? Before looking at  the proof  I  had in  mind at  that  time,  it  is
convenient here to consider another possible supposed proof.
In  a  book,  Lapses  in  Mathematical  Reasoning,  the  authors,  Russian
mathematicians, mention fallacies in which a true mathematical law is applied but



in the wrong field of numbers. (Brades et. al. 1963: 14) It is interesting that
fallacies involving dividing by zero can be thought of  as a subclass of  those
applying a true law in the wrong field of  numbers,  and these in turn are a
subclass of fallacies of ambiguity.
When we learn about numbers in our school years, we learn to use the word
‘number’ ambiguously. At first the teacher says that numbers are those things you
count with: 1, 2, 3, 4, etc. So we learn to use ‘number’ to mean a natural or whole
number, a positive integer. In this sense of ‘number,’ we learn that we can always
add and always multiply, but we cannot always subtract or always divide. For
instance, we cannot subtract 7 from 3 or divide 3 into 7. But then later the
teacher told us that, after all, we could always divide as well as always add or
multiply, though we still could not always subtract. We could now always divide
because, the teacher said, “there are more numbers than you yet know about.”
Even as a youngster, I was rather hyper about ambiguity, and I said – though to
myself, not out loud – “Come on, teacher, there aren’t more numbers than we
know about.  The truth  is:  you’re  going to  change the  meaning  of  the  word
‘number’”.  And  so  it  happened.  Now  ‘number’  meant  positive  rational,  the
fractions were numbers, and we could always add, multiply, and divide.  With
‘number’  in  this  meaning,  any  number  whatsoever  could  be  divided  by  any
number whatsoever, without any exception whatsoever.
Later the term ‘number’ will be extended again, from the positive rationals to the
rationals generally. Now subtraction will always be possible, as well as addition
and multiplication, but division by zero will not be possible.
And so one fallacious way of dividing by zero would be to apply the true law that
division is always possible – true in the positive rationals, but to apply this law
wrongly  to  rationals  generally.  This  way  of  dividing  by  zero  would  involve
equivocation on the term ‘number’  and so would be in accord with the One
Fallacy Theory.

Still, when I myself divided by zero, I did not do it in this way, I believe. I knew
that ‘number’ was ambiguous. I knew that when you extend the number system,
as from positive rationals to rationals generally, in order to make a new operation,
as  subtraction,  always  possible,  you  have  to  recheck  the  previously  always
possible operations – addition, multiplication, and division – to make sure they are
still  always  possible.  But  I  thought  I  had  seen  in  my  readings  just  such  a
rechecking, a proof that these operations were always possible in the rationals
generally.



So I  recalled  the  argument  in  question.  Take  addition.  Addition  was  always
possible in the positive rationals and subtraction is now always possible. So let a
and b be positive. Then a + b always exists. But a + (-b) is a – b and also always
exists. And (-a) + (+b) is b – a and always exists. And, finally, (-a) + (-b) = -(a + b),
a negative, and always exists. So addition is always possible, it seems. But the
exact same argument can be given for multiplication and division. So they are all
always possible.
Of course, the mistake in this argument becomes clear when we look at the
version concerning division. But it is already there in the argument for addition.
By considering a and b and -a and -b, I consider the positive numbers and the
negative numbers but I forget to consider zero. What about zero!?
But this seems rather embarrassing. I said at the outset that I didn’t like the
explanation that people divide by zero because they simply forget the special case
of zero. Yet here I seem to have done precisely that! I just forgot about zero. How
could I just forget about zero??

If there are three kinds of numbers, the positive, the negative, and zero, then in
order to prove something about all numbers, you have to prove it about all three
kinds, and not just about two. If there are three people, Arthur, Barbara, and Carl,
in a room and I argue that all the people in the room are tall because Arthur is tall
and Barbara is tall and I just forget about Carl, who is short, then that argument
is not a fallacy; it is just a stupidity. Surely I couldn’t have just forgotten about
zero!
Actually, I don’t think I just forgot about zero in the above reasoning, rather I
vaguely thought I had covered zero twice over, though in fact my reasoning was
not valid for zero.  For I  tend to use the terms ‘positive’  and ‘negative’  both
strictly, excluding zero, and loosely, including it. So by proving something for all
positives and negatives, I vaguely felt I had proven it for zero.
First, zero seems positive in some ways. It is a square number, equal to 02. It is
its own absolute value. It is the end point of the positive half of the real line. By
the familiar end point ambiguity, an end point seems both to be and not to be a
point of the line segment whose end point it is. Also the positive and negative
segments are two halves of the real line, and two halves seem to complete the
whole. And if zero seems to be positive, then -0, which is also 0, seems also to be
negative.
Given that 0 seems in some ways to be positive and negative, the basic reason I
tend to use these two terms ambiguously is because it is convenient. We wish to



prove results about an infinite class of things, the numbers. We cannot prove
results about the numbers one by one, so we divide them into large classes, such
as the positives and the negatives. If it happens that there are special cases, such
as zero, which do not exactly fit into these large classes, we tend to include or
exclude the special cases into the large classes. For the purpose of one proof, we
think of zero as positive, for another, as negative, for another as both or neither.
We have a tendency to stretch and contract the more general class terms to
include and exclude the special cases, as convenience dictates. This, I think, is
why the argument that we could always divide in the rationals generally sounded
correct  to  me.  As  I  said,  when I  proved the  result  for  all  positives  and all
negatives, I vaguely thought I had covered zero twice over. This general sort of
fallacy, shuffling the special case in and out of the general classes, I shall call the
‘special case fallacy.’ It turns out that a variant of this fallacy is used in the
remaining two fallacies I wish to discuss.
Misdrawn diagram fallacies in geometry seem at first to be counterexamples to
my theory. The problem is in the misdrawn diagram, not in any ambiguity in the
language used in discussing the diagram. Yet I clearly remember being shown an
argument involving a misdrawn diagram and being unable to see the error in it.
However I shall I argue that the diagram itself is a representation and therefore
can be ambiguous. In other words, the diagrams are not really misdrawn so much
as misinterpreted.

In looking over various examples of this sort of fallacy in the Lapses book, I did
not find one simple enough to present here in detail. However the ones I looked at
generally had a common form. In the givens we are told that there is a point with
property P. Call this point A. We are told also that there is a point with property
Q.  Call  this  point  B.  We represent  this  by drawing two representing points,
labelled ‘A’ and ‘B’. In the reasoning which follows, we are asked to consider the
line from point A to point B. We show that this line has property X. Then we show
it has property not-X. We seem to have proven a contradiction.
The solution is that point A and point B are the same point. So there is not line
from A to B. (Brades 1963: 22) The fallacy can be thought of as an example of the
special case fallacy. When we originally draw the representing points ‘A’ and ‘B’,
these are floating points which may or may not coalesce. They represent that
there is an A and a B, which may or may not be identical.
Given A, then B may be the same as A, the special case, or anywhere else, the
more general subcase. So the representation assimilates the special case to the



general case; the two points, so to speak, may be one. But then, when we agree to
draw a line from A to B, we misinterpret the representation as representing that A
and B are different, two strictly, the more general subcase excluding the special
case.
Therefore it is a fallacy of ambiguity, after all: the ambiguity of the representing
diagram.

A very similar analysis can be given for the last fallacy I want to look at. Here we
set out to prove that all horses are the same color.373 We ‘prove’ this by ‘proving’
by mathematical induction that, for any n, any n-membered set of horses has the
same-color property, namely the property that all its members are the same color.
The ‘theorem’ is obvious for n = 1, for any set of only one horse has all  its
members the same color. So we need to prove the inductive step: if  every n
membered set has the same-color property, so does any n + 1 membered set. We
illustrate the argument for n = 5, n + 1 = 6, but this case is to stand in for
general n and n + 1. We have a set of five horses and a sixth horse. All the 5
horses  are  the  same  color.  Remove  the  first  of  the  5  and  consider  all  the
remaining  horses.  These  again  are  5  horses  and  all  have  the  same  color.
Therefore all 6 horses are the same color. QED. So all horses are the same color.

Now the mistake in this ‘proof’ is that the argument for the inductive step works
for any n and n + 1 with n more than 1, but does not work when n is 1 and n + 1
is 2. We do not notice this because, I think, we abstract from the 5 and 6 case a
mental picture which plays the role of a misleading diagram.

This picture looks like this:
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Here the first big dot is the first horse. The second is the n + 1 horse. The three
dots represent whatever is left of the n horses, the first excluded. The ambiguity
in this representation is in the meaning of the three dots. It originally represents
all but the first of the initial n members, if there are any but the first. It is then
misinterpreted as meaning that there are such remaining members. Initially the
special case of there being no  remaining members is included, but then it is
excluded. So here again we have a special  case fallacy,  and we also have a
misdrawn – or really misinterpreted – diagram fallacy, although now the diagram
is not actually drawn, but is a mental picture.
In this paper, I have considered three mathematical fallacies which at one time I
thought were counterexamples to my One Fallacy Theory. In each case, I have
argued that these fallacies can be analyzed as fallacies of ambiguity after all.

NOTES
[i] My thanks to R. De Souza, who chided me about holding a theory to which I
seemed  to  know  counterexamples.  His  comments  led  me  to  explore  these
examples more thoroughly.
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