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1.  Introduction:  the  Epistemological  Approach  to
Argumentation  and  Probabilistic  Arguments
In this paper I present a proposal on how to conceptualise
and handle probabilistic arguments in an epistemological
approach to argumentation. The epistemological approach
to argumentation is an approach which aims at rationally

convincing addressees or,  more precisely,  which takes knowledge or justified
belief of an addressee to be the standard output of argumentation (Biro 1987, p.
69; Biro & Siegel 1992, pp. 92; 96; Siegel & Biro 1997, pp. 278; 286; Lumer 1990,
pp. 43 f.; 1991, p. 100; 2005b, pp. 219-220; Goldman 2003, p. 58).[i] Therefore,
this  approach  develops  criteria  for  valid  and  adequate  arguments  whose
observance leads, or at least is intended to lead, to the production of that output:
justified belief. The general way in which this goal is achieved is by guiding the
addressee through a process of  recognising the truth or  acceptability  of  the
argument’s  thesis.  An  ordered  sequence  of  judgements,  i.e.  the  reasons,  is
presented to the addressee whose truths, according to a primary or secondary
criterion of truth or acceptability, imply the truth or acceptability of the thesis
and which are chosen in such a way that the addressee can immediately check
whether they are true or acceptable (Lumer 1990, pp. 44-51; 2005b, pp. 221-224).

In an epistemological approach to argumentation, different types of arguments
can be distinguished according to the respective epistemological principles on
which they are based. There are e.g. deductive arguments based on deductive
logic; there are practical arguments  based on rational decision theory and its
additions like game theory or philosophical theories of practical rationality; there
are empirical-theoretic arguments for empirical laws about theoretical entities,
which are based on criteria for good empirical theories; there are probabilistic
arguments for probability judgements, which are based on probability theory; etc.
To be constructively helpful, an epistemological theory of argumentation should
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not  only  develop  a  general  definition  of  ‘good  argument’  but  also  elaborate
precise criteria for such special types of argument. Such criteria have e.g. been
proposed within the epistemological approach for deductive arguments (Feldman
<1993> 1999,  pp.  61-80;  94-100;  Lumer 1990,  pp.  180-209)  or  for  practical
arguments (Feldman 1999, pp. 351-354; 420; Lumer 1990, pp. 319-433). For the
realm  of  probabilistic  arguments,  criteria  for  certain  subtypes  have  been
developed: criteria for genesis of knowledge arguments (which try to show that
the thesis has been correctly verified by someone), which include arguments from
testimony and from authority (Feldman 1999, pp. 216-232; 418; Goldman 1999,
pp. 103-130; Lumer 1990, pp. 246-260), and for interpretative arguments (which
try to establish the causes of known facts and circumstantial evidence through
inference to the best explanation based on Bayes’s Theorem) (Lumer 1990, pp.
221-246).[ii]   A general theory of probabilistic argumentation which provides
exact criteria for the validity and adequacy of these arguments is so far lacking,
however.  Such a theory will  be proposed in the following,  starting from the
epistemological approach to argumentation.

“Probabilistic argument” here always refers to: an argument with a probability
judgement as  its  thesis.  Applying the epistemic approach to  such arguments
presupposes  primary  or  secondary  criteria  of  the  truth  or  acceptability  of
probability judgements. Of course, such criteria should be provided by probability
theory. But,  although there is a rather broad consensus in probability theory
about  the  calculus  to  be  used,  there  is  significant  divergence  about  the
interpretation  and conceptualisation  of  probability,  which  would  also  lead  to
different conceptualisations of probabilistic arguments. So we first have to go
some way into the philosophical debate on the best concept of probability.

2.  Philosophical  Concepts  of  Probability  –  A Case for  Probability  as  Rational
Approximation to Truth
Philosophical theories of probability come in two main groups: first, objective or
realistic theories, which maintain that probability is an objective, real feature of
the  world,  and,  second,  subjective,  epistemic,  or  cognitivist  theories,  which
maintain that probability is essentially an epistemic or belief phenomenon, due to
our  limited knowledge.  The two main realistic  approaches are,  first,  relative
frequency  theories,  according  to  which  probabilities  are  identical  to  actual
relative frequencies (Venn <1866> 2006) or to limiting relative frequencies in a
hypothetical infinite row of trials (Reichenbach <1935> 1949; von Mises <1928>



1981),  and,  second,  propensity  theories,  according to  which probabilities  are
identical  to a quantitative disposition in an object  or  in a type of  system to
produce a certain result or results with a certain relative frequency (Gillies 2000;
Hacking 1965; Mellor 2005; Miller 1994; Popper 1959). Propensity theories have
been developed to explain single-event stochastic processes like radioactive decay
of single atoms, whereas frequency theories seem to capture particularly well
probabilities derived by statistical inferences.

At first appearance, only realistic or objective theories seem to be appropriate to
provide  what  an  epistemological  approach  to  argumentation  needs,  namely
objective  criteria  for  the  truth  of  probability  judgements.  This  impression,
however, is due to an ambiguity of the word “objective”. A judgement may be
“objective”, in a weak sense, of being cognitive, i.e. of being true or of being the
result of an interpersonally verifiable process of applying clear criteria. And a
judgement may be “objective”,  in  a  stronger sense,  of  being realistic,  i.e.  of
describing a reality that is independent of any subjective attitude. Of course, only
realistic theories of probability are objective in the strong sense; however an
epistemological approach to probabilistic arguments needs objective criteria for
the truth or acceptability of probability judgements only in the weak, cognitivist
sense. This weak kind of objectivity can, however,  also be provided by some
epistemic  theories  of  probability  so  that  the  objectivity  requirement  is  no
argument in favour of realistic theories of probability.

There are many well-known objections against every single realistic theory of
probability.  (In  theories  of  actual  frequencies,  e.g.  the  result  of  a  series  of
experiments may strongly diverge from the true probability – think of a die rolled
only three times in its life and always showing “6” (Hájek <2002> 2009). In
theories of limiting relative frequency real infinite series are impossible and soon
lead to radical changes of the experimental situation – what a die will look like
after having been rolled a billion times? –, whereas hypothetical infinite series
have left empiricism behind (ibid.). Propensity theories share many problems of
frequentism;  in  addition,  propensities  are  causalist  and  hence  asymmetric,
whereas probabilities in a certain sense may be “inverted” – Bayes’s Theorem e.g.
implies such an inversion of conditional probabilities: P(a/b) = (P(b/a)∙P(a)) / P(b)
–; it may make sense to say that affluent people have a propensity to vote for
conservative  parties,  whereas  it  makes  little  sense  to  say  that  votes  for
conservative parties have a propensity to come from affluent people (Humphreys



1985).). I want to stress here, however, only two general objections. The first is
ontological. Of course, there are relative frequencies and these provide us with
information about probabilities, and there are qualitative structures of a system
underlying these relative frequencies. But what are the realistically conceived
frequentist or propensity probabilities of a single event? Either the die ends up
with “6” on top or it does not; and if it does this was probably determined by laws
of nature. We are speaking of probabilities in such cases only because we do not
know the result beforehand; we try to approach truth as much as possible before
the event by speaking of probabilities. Afterwards our probabilities even change,
e.g.  to  the  probability  1  for  “6”.  At  least  probabilities  of  single  events  are
epistemic probabilities; and for the objective fact of relative frequencies we have
precisely the notion of ‘relative frequency’, which is different from ‘probability’.
Probabilities are only an epistemic substitute in case of incomplete knowledge.

The other  general  objection to  realist  theories  of  probabilities  is  particularly
relevant  to  our  endeavour  to  develop  an  epistemic  theory  of  probabilistic
arguments. There are many epistemic uses of probabilities which do not try to
capture real tendencies in the world. This holds in particular when we try to find
out backward information, like the probable cause of a known fact – e.g. ‘the
dinosaurs probably (with a probability of 90%) became extinct as a consequence
of a giant asteroid hitting the Earth’ (cf. Hacking 2001, pp. 128-130) – or the
probable meaning of a sentence or the fact indicated by a clue. Such probability
statements do not speak of frequencies or propensities in the world but even try
to fill  our gaps of knowledge backwards.  Hence these probabilities are quite
obviously epistemic in nature.

What, then, about epistemic theories of probability? We have to dismiss rather
quickly  the  traditional  Laplacian  theory  of  a  priori  equiprobability  of  logical
possibilities, which has the immense disadvantage of not incorporating empirical
information about relative frequencies,[iii] and the theory of logical probabilities
or inductive logic  (Carnap 1950; 1952). Problems of the latter theory, among
others, are that its confirmation function is arbitrary or that, contrary to what the
theory presupposes, (basic) evidences do not necessarily have the probability of 1.
The major remaining approach then is subjectivism or personalism or subjective
Bayesianism,  which conceives probabilities in a personal or subjective way as
rational degrees of belief.

Subjectivism conceives degrees of belief in a behaviouristic manner as something



revealed by preferences. In the most simple case a subjective probability p of an
event e  is  equated with that value p  for which it  is  true that the subject is
indifferent about receiving some amount of money p∙m for sure and a lottery by
which the subject receives the complete amount m conditional on e. (Ps(e)=p :=
p∙m ≈s <e; m; ¬e; 0>). More complex systems make stronger presuppositions
about preferences and measure probabilities as well as utilities (Eells 1982, pp. 9
f.).  Behaviouristic  conceptions  of  the  degree  of  belief  lead  to  well-known
problems, e.g.:  buying and selling prizes usually differ;  the utility function of
money is not linear, hence the utility of p∙m is not identical to p times the utility
of m. The general problem behind such difficulties is the behaviouristic approach,
which has to find out too many interdependently acting subjective variables only
on the basis of knowledge about the behavioural surface.

Let me now add to this a further and less well-known aspect of this problem,
which  is  detrimental  to  the  usual  interpretation  of  subjectivism  itself.  The
standard interpretation  of  subjectivist  probability  as  degree of  belief  cannot,
though we actually have to, distinguish between, first, a (less than certain) degree
of belief or confidence (in a non-technical sense) and, second, a belief with a
probabilistic content. That we have to distinguish these two things is obvious in
situations where both phenomena are present. Someone has heard from an expert
that the probability of some event e is p, or he has inferred this probability from
his own frequency counts and hence believes that the probability of e is p. He is
not sure about this probability, however, and has only a reduced degree q of
belief in it – e.g.because he knows he has a bad memory or cannot recall clearly
the value p or because he has some doubts about the expert’s reliability. The
difference between the two kinds of uncertainty is that the probability believed is
part of the belief’s content, i.e. the proposition believed in, whereas the degree of
belief is outside this propositional content as it is something like the intensity of
the propositional attitude. Instead of simply saying ‘subject s believes that a’ [iv]
and thus taking ‘belief’ as a qualitative notion we can take it as a quantitative,
functional notion: ‘s believes that a to the degree q (or with the confidence q)’ and
we can write this as: Bs,a=q. If the proposition believed in has a probabilistic
content, as in the example just given, we can write this as: s believes with the
confidence q  that the probability of  e  is  p:  Bs,(Pe=p)=q.  This differentiation,
however,  constitutes  a  problem  for  the  usual  subjectivist  interpretation  of
probability. The probability now shows up already in the belief’s content; what
does this (inner) concept of ‘probability’ then mean? If the probability value and



the confidence value differ – as they are supposed to do in most cases – then this
probability cannot be the degree of belief. At least it cannot be the degree of
belief of that person at that time. The defender of subjective probabilities as
degrees of belief may reply to this objection: but it can be the degree of belief of a
different person or of the same person at a different time. From the several
alternatives – e.g. the subject’s earlier belief, the informant’s belief or the belief of
a  rational  subject  –  the  latter  seems to  be  the  most  plausible  because  this
interpretation would be possible in any case and not only in a limited number of
cases.  However,  this  proposal  faces  serious  problems  too.  First,  the
differentiation in believed probability and degree of belief seems to exist already
just from the beginning even for very rational subjects who e.g. have determined
some probability on the basis of a frequency count executed a second ago but,
because of considering human fallibility, have only a confidence near to one. To
what other degree of certainty shall the probability judgment refer to in this case?
Second, rational subjects should be exactly the people who base their subjective
probabilites  on  clear  epistemic  procedures,  which  are  different  from simply
having  a  certainty  impression  (which,  perhaps,  might  be  interpreted  as  the
degree of certainty). According to an at least slightly verificationist semantics,
some of these procedures would make up the meaning or content of the resulting
belief’s  proposition,  so that (1)  the probabilistic content would belong to the
propositional content and would not make up the external degree of confidence
and (2) it would have a meaning other than referring to a degree of belief. All this
means we are still lacking an interpretation of ‘probability’.

What then are probabilities? My proposal for answering this question is: In alethic
terms,  probabilities  are  rational  approximations  to  truth  under  conditions  of
epistemic limitations. This is supposed to mean that the respective subject does
not know whether the real value is 0 or 1, which are the only possible values; but
his knowledge, though not sufficient to establish 0 or 1, indicates a value between
these extremes, which may be nearer to 0 (or 1) to a given degree. Given these
explanations, an explanation of probabilities in epistemic terms seems to be even
more adequate. Therefore, instead of speaking of “approximation to truth” one
might also say that probabilities, in justificatory terms, express a certain tendency
of  evidence  for  the two possibilities,  which we can extract  from our  limited
knowledge. If the probability of an event e is p the tendency of evidence for e is p,
with 0≤p≤1, whereas the tendency of evidence for e  being false is 1-p.[v]  In
practical  terms, finally,  probabilities are degrees of rational reliance  that the



event  in  question will  occur.  They are values we ascribe to  propositions for
decisional purposes and which by maximising expected utility permit us to follow
a strategy which, according to the laws of large numbers, in the long run will be
the best among the strategies we can follow with our limited knowledge. These
three aspects coincide because the epistemic aim is exactly to approach truth as
closely as possible with the given information; and using these approximations in
one’s  decisions  in  a  decision-theoretic  fashion  implies  making  maximum and
specific use of the information at hand.

3. Some Syntactical Features of Probabilities as Tendencies of Evidences
According to the explanations just given, probabilities as tendencies of evidences
depend on a given corpus of knowledge; i.e. from different corpora of knowledge
may result different degrees of probability: after having witnessed the rolling of a
die the probability of showing “6” may increase from 1/6 to 1 (or decrease to 0).
For nonetheless being able to be objective in the sense of being true, probability
judgements have to express this kind of relativity by a respective variable that
refers to the particular knowledge on which the probability is based.

Given the rationality and cognitivity of the probability striven for, the truth of a
probability judgement should not depend on the identity of the believer but on the
particular data corpus of which the person disposes. A different person with the
same data corpus should, of course, assume the same rational probabilities. This
means the knowledge variable of the probability concept should refer to data
bases and not to persons (and moments). Of course, this does not exclude that the
intended data base is denoted by a definite description that identifies the data
with those at hand to a certain person at a certain time: ‘Susan’s data at that
moment’. In ordinary language as well as in theoretic expositions the reference to
the data base is rarely expressed explicitly; often it is simply identical to the
speaker’s data base at that very moment. (The probability relativised in this way,
e.g. ‘the probability of event e on Susan’s data base is q’, has to be distinguished
from the subjective, or more precisely, from the believed probability, which can
be expressed with our probability concept too: ‘Susan believes that the probability
of the event e (on her present data base) is p.’) A further advantage of taking data
corpora as the second variable of probabilities is that in this way things like
‘scientific’  or  even  ‘natural  probabilities’  can  easily  be  defined.  A  scientific
probability would be one where the data base is the present scientific knowledge.
And a natural probability  of an event could be one where the data base is a



complete (true) description of the world’s history before that event plus the (true)
natural laws.

The other variable – or, in the case of conditional probabilities, the other two
variables – of the probability concept refer to the things whose probability is
expressed.  Sometimes  it  is  assumed  that  these  relata  are  events,  or  more
generally, states of affairs. This may be true in a realist approach to probability;
however, in an epistemic approach the relata have to be what can be the content
of knowlegde, i.e. propositions. To put it another way, the relata of epistemic
probabilities  have  to  be  more  fine-grained  than  events,  namely  propositions,
because, though ‘Peter’s murderer has poisoned him’ and ‘Sara has poisoned
Peter’ could well denote the same event, the respective data base may not imply
that Sara was Peter’s murderer so that the probabilities of the two tokens may be
different. And this is possible only if, given the identity of the event and of the
data base, the tokens are propositions.

So, finally, the syntax of basic probability judgements is: ‘The probability of the
proposition  a  on  the  data  base  d  is  x’  (Pa,d=x  or,  if  one  prefers  brackets:
P(a,d)=x), and of conditional probability judgements it is: ‘The probability of a
given b  on the data base d  is  x’  (P(a/b),d=x  or P((a/b),d)=x).  (Pa,d  does not
coincide with P(a/d) because the d in the first instance is supposed to be true but
in the second instance it is not. Nor does P(a/b),d coincide with P(a/d) because d
does not need necessarily to imply b.)

4. Justifications of Probability Judgements: 1. Basic Probabilities
How can probability judgements be recognised in an epistemologically qualified
way? In the realm of (more or less) certain knowledge we distinguish between
basic or elementary cognition, in particular observation, on the one hand and
derivative cognition proceeding by deductive inferences on the other. In the realm
of probabilistic knowledge we can distinguish in a similar way between basic
cognitions of probabilities via known relative frequencies (these cognitions do not
rely on probabilistic premises, hence provide basic probability judgements) and
derivative cognitions of probabilities by applications of the probability calculus,
which already uses probabilities as inputs.

The basic form of probability cognitions of e.g. whether e or ¬e via known relative
frequencies, trivially,  works as follows. It,  first,  presupposes that we have no
better information about e, e.g. no definite information that e happened. It further



presupposes that we know some relative frequencies applying to e, i.e. relative
frequencies of the form: ‘The relative frequency of Es among Fs is x’, where e has
the property F and perhaps the property E. Finally, it presupposes that if there
are several  such relative frequencies  we can identify  the one which is  most
specific about e, i.e. entails the most detailed description F of e. In a certain sense
this specificity condition is a further special case of the condition that the data
base does not contain any further information by means of which we can draw
stronger conclusions about e. If all these presuppositions are fulfilled we can infer
that the probability of e  is x.  (We may formalise these conditions as follows:
“RF(E/F)=x” shall mean: the relative frequency of Es among Fs is x; “NBI” shall
mean: “no better information”, i.e. the precedent information is the best in the
respective data base about the proposition in question. With these abbreviations
the conditions can be formalised as:
Foundation Principle:

P(e / RF(E/F)=x & f & NBI),d = x),

for all E, F, d, e, f and x with P(RF(E/F)=x & f & NBI),d > 0.

(This Foundation Principle is a reformulation of Hacking’s Principle of Direct
Probability (Hacking 1965; 2001, p. 137).

Note  that  this  Foundation  Principle  does  not  presuppose  any  probabilistic
information as an input of its use: relative frequencies are objective realities,
which sometimes can be known with certainty; the same holds for “f”, i.e. the fact
that the possible event e has the quality F. Thus the Foundation Principle is really
basic  in  the  sense  of  newly  introducing  probabilities  without  already
presupposing  other  probabilities.

The use of the Foundation Principle and hence the use of basic probabilities can
be justified practically, i.e. as practically rational, on the basis of the laws of large
numbers.  If  we  do  not  dispose  of  certain  information,  probabilistic  beliefs
acquired via the Foundation Principle are the most informative condensation of
our information about the event in question. If we use them via expected utility
maximisation, of course, this cannot guarantee success in any single case but in
the long run will provide better results than the use of any other way of handling
uncertain  information;  as  can  be  shown in  comparisons  with  other  decision
strategies  expected  utility  maximisation  will  lead  to  the  highest  utility.  This



justification, however, does not say anything about the success of expected utility
maximisation in any single case. So there may be decision situations where the
large number presupposition does not hold – e.g.  in decisions about life and
death, where a fatal result implies simply that there will not be any further risky
decision – and where expected utility maximisation may not be the best decision
strategy.  Hence,  the  just  mentioned  practical  justification  of  the  Foundation
Principle proves the usefulness of employing probabilities calculated by means of
this principle in many situations and justifies the use of the utility maximising
strategy in many situations but it does not justify always weighting probabilities
in decision situations according to the identity function, i.e. the probability x with
the weight x.

Counting the magnitude of the population and the quantity of the positive cases is
the safe way to establishing relative frequencies. This is costly, however, and not
always possible. Therefore we need further ways to acquire information about
relative  frequencies.  One  less  secure  way  is  to  try  to  remember  single
occurrences of the relative frequency in question and to count them. In addition,
fortunately, mother nature has provided us with a not very reliable but at the
same time not too bad sense of relative frequencies; on the basis of this we may
consider  past  experiences  and  estimate  in  a  holistic  way  their  relative
frequencies.  This  sense of  relative frequencies can also lead to an uncertain
degree of belief in a universal connection of two types of events. Another way to
obtain information about relative frequencies, then, is to rate one’s degree of
certitude about such a connection and to take it as the relative frequency. This
strategy may be called “propositionalisation of degrees of certitudes” because the
degree of certitude, which is the intensity of the belief and hence not part of its
content,  is  now made available as quantitative information within the beliefs
proposition. This makes the quantitative information universally usable.

Propositionalisation of certitudes: Ppf(RF(E/F)=y / Bs,(“x(Fx®Ex))=y & NBI),d=1,
for all s, E, F, y, d with P(Bs,(“x(Fx®Ex))=y & NBI) > 0,
where Ppf is a prima facie probability, which may be combined with other prima
facie probabilities to obtain the final probability.

The final and the weakest way of acquiring information about relative frequencies
presupposes  that  the  data  base  contains  absolutely  no  empirical  information
about  the  case  in  question.  In  such  a  situation  we  may  establish  relative
frequencies in a Laplacian way by counting the logical possibilities.



The methods of establishing or estimating relative frequencies described so far
scrutinise all the individuals of the population, which is often too expensive or
even impossible. The range of these methods can be enormously extended if the
scrutinised set can be considered as a (more or less) representative sample of a
much bigger population so that the relative frequency established in the sample
may  be  extrapolated  as  holding  for  the  whole  population.  Statistics  and
considerations about projectability of  properties tell  us when and with which
degree of confidence this can be done.

5. Justifications of Probability Judgements: 2. Derivative Probabilities
The other way to cognise probability judgements in an epistemologically qualified
way  is  to  calculate  probabilities  with  the  help  of  the  probability  calculus.
Fortunately, this technical part of probability theory is much less controversial; a
certain orthodoxy has been achieved. My task here is therefore only to remember
some basic principles of this calculus. The basic axioms of the calculus are:
Normalcy: For all a and d: 0 ≤ Pa,d ≤ 1.

Certainty: Certain propositions have the probability 1.

Additivity: If a and b are mutually exclusive then: P(aÚb),d = Pa,d + Pb,d, for all
a, b, d.

Conditional probabilities: P(a/b),d = (P(a&b),d)/(Pb,d), for all a, b, d with Pb,d>0.

From these axioms follow theorems like:

Overlap: If a and b are not mutually exclusive then: P(aÚb),d = Pa,d + Pb,d –
P(a&b),d, for all a, b, d.

Complementarity: P(¬a),d = 1-P(a),d, for all a and d.

Bayes’s Theorem, extended: Let h1 to hn be mutually exclusive and exhaustive
hypotheses, and e some relevant evidence, then:

P(e/hi),d ∙ P(hi),d

P(hi/e),d = ¾¾¾¾¾¾¾¾¾¾

j=1ånP(e/hj),d ∙ P(hj),d

6. Rules for Derivative Probabilistic Arguments



As described in the introduction, according to the epistemological approach to
argumentation, arguments should be able to guide an addressee in a process of
recognising  the  acceptability  of  the  argument’s  thesis.  And  they  do  this  by
presenting him reasons, i.e. judgements, which according to an epistemological
primary  or  secondary  criterion  for  the  acceptability  of  the  thesis  imply  this
acceptability. The addressee may then check the truth of these reasons and of the
implication relation and thus convince himself of the thesis’s acceptability.

So a very simple probabilistic argument may look like this:
Thesis q: The probability of rolling a “1” or a “2” in the next cast is 1/3.

Indicator of argument: This holds because:

Reason r1: The additivity axiom of the probability calculus says that probabilities
of mutually exclusive possibilities add up to the probability of the disjunctively
combined event.

Reason r2: The probability of rolling a “1” (in the next cast) is 1/6.

Reason r3: The probability of rolling a “2” (in the next cast) is also 1/6.

Reason r4:  The possibilities of rolling a “1” and of rolling a “2” are mutually
exclusive.

Reason r5: 1/6 + 1/6 = 1/3.

Hence the thesis.

A formal version of this argument may be clearer:

Thesis q:  P(“1”Ú“2”),di=1/3 – with di  referring to a particular data base, e.g.
Peter’s knowledge exactly at 12 noon (five seconds later Peter may already know
e.g. that “1” is true, hence: P(“1”Ú“2”),dj=1).

Indicator of argument: Proof:

r1: Additivity: If a and b are mutually exclusive then: P(aÚb),d = Pa,d + Pb,d, for
all a, b, d.

r2: P(“1”),di=1/6.



r3: P(“2”),di=1/6.

r4: P(“1”&”2”),di=0.

r5: 1/6 + 1/6 = 1/3.

Q.e.d.

In everyday life such explicit and extended arguments are virtually non-existent.
But we may find abbreviated versions of them like this: “The probability of rolling
a “1” or a “2” in the next cast is 1/3 because the probabilities of both these
possibilities individually are 1/6; and because the two possibilities exclude each
other their probabilities have to be added, which makes 1/3.” So in this abridged
version the reference to the data base is missing as well as the quote of the
additivity axiom; and the mention of the mutual exclusiveness may be missing as
well. Of course, for representing a valid argument the parts omitted in such an
abridged argument must hold nonetheless and they must be reconstructable for
an addressee. So we have to distinguish ideal, complete probabilistic arguments
and non-ideal abridged versions of them whose validity is defined in terms of a
corresponding ideal argument.

Following these indications, I have tried to provide a reasonably precise definition
of ‘valid derivative probabilistic argument’ in two steps, by first defining what an
‘ideal  valid  derivative  probabilistic  argument’  is  and then giving the general
definition.

x  is  an  ideal  (argumentatively)  valid  derivative  probabilistic  argument,  iff  x
satisfies the conditions PA0 to PA3.

PA0.1: Domain of definition: x is a triple <r°,i,q>, consisting of

1. a set r° of judgements r1, r2, …, rn,

2. an indicator i of argument, and

3. a judgement q.

r1, …, rn are called the “reasons for q” and q is called “the thesis of x”.

PA0.2: Structure of the argument:



PA0.2.1: Type of thesis: q is of the form: ‘The probability of a (given b) on the data
base d is p.’ (Pa,d=p or P(a/b),d=p).

PA0.2.2: Kinds of reasons:

1. At least one of the reasons r1, …, rn is an axiom or theorem of the probability
calculus, hence a general probabilistic judgement.

2. The singular probability judgements among the reasons all refer to the data
base d (cf. PA0.2.1) or in part to d and the other part to a predecessor dprior, i.e.
d without some evidence e (dprior = d\e).

PA1: Indicator of argument: i indicates that x is an argument, that r1, …, rn are
the reasons and that q is the thesis of x. In addition, i can indicate that x is a
probabilistic argument.

PA2: Guarantee of truth:

PA2.1: True premises: The judgements ri are true.

PA2.2: Inferential validity: The axioms and theorems of the probability calculus
contained  in  r°  and  the  other  reasons  perhaps  contained  in  r°  imply
mathematically  q  –  i.e.  according  to  deductive  and  arithmetic  rules.

PA2.3:  Best  evidence:  d  does  not  contain  information  that  permits  stronger
conclusions about a (or, respectively, about the conditional probability P(a/b),d).

PA3: Adequacy in principle: x fulfils the standard function of arguments; i.e. x can
guide a process of recognising the truth of q.

PA3.1:  The reasons r1 to rn  are well-ordered, i.e. as chains of equations and
insertions of data in general formulas.

PA3.2:  Apart  from intermediate results,  r° does not contain reasons that are
superfluous for fulfilling the derivability condition PA2.2.

PA3.3: There is a subject s and a time t for which the following holds:

PA3.3.1:  the subject s  at  the time t  is  linguistically competent,  open-minded,
discriminating and does not know a sufficiently strong justification for the thesis
q;[vi]



PA3.3.2: d refers to s’ data base at t; and

PA3.3.3: if at t x is presented to s and s closely follows this presentation this will
make s justifiedly believe that the thesis q is acceptable; this process of cognition
will work as follows: s will follow the chains of equations and insertions affirmed
in r°, check their truth, thereby coming to a positive result.

Explanation  regarding  PA0.2.1  and  PA0.2.2:  The  thesis  of  a  probabilistic
argument  in  the  sense  used  here  is  a  singular  probability  judgement,  i.e.
judgement which attributes a specific probability to a specific proposition. So
general  probability  judgements,  i.e.  in  particular  theorems of  the  probability
calculus,  are  not  included for  the  simple  reason that  such theorems can be
justified in deductive arguments, deriving them deductively from the axioms of
the probability calculus – like any mathematical theorem. Such arguments, as
opposed to probabilistic arguments, do not depend on the particular data base;
their theses are general judgements quantifying over any data base d (cf. the
examples given in sect. 5), they are not relative to a particular data base (as di in
the example given at the beginning of this section). Only the dependence on a
specific data base requires the particular conditions of probabilistic arguments
such as the conditions ‘best evidence’ (PA2.3) or ‘data base’ (see below, PA5.5).

x is a (argumentatively) valid derivative probabilistic argument, iff x satisfies the
conditions PA4.1 or PA4.2.

PA4.1: Ideal argument: x is an ideal valid derivative probabilistic argument, or

PA4.2:  Abridged  argument:  x  is  not  an  ideal  valid  derivative  probabilistic
argument, but there is such an (ideal valid derivative probabilistic) argument y
which to a certain extent is identical with x but for which the following holds:

1. The set of reasons rx° of x is a subset of the set of reasons ry° of y or of
abridged versions of these reasons (cf. PA4.2.3).

2. The reasons perhaps missing in rx° are axioms or theorems of the probability
calculus or they represent intermediate results; and the chain of equations is not
interrupted by these omissions.

3. In the thesis q or in some of the probabilistic reasons of x the reference to the
data base d may be omitted.



4. Condition PA3.3 holds analogously also for x.

Valid  arguments  are  instruments  for  fulfilling a  certain  function,  namely  the
function to lead to the cognition of the thesis; like all instruments they can fulfil
their function only if they are used properly. In particular the valid argument
must fit with the addressee’s cognitive situation. In the following the adequacy
conditions  for  an  epistemically  successful  use  of  probabilistic  arguments  for
rationally convincing are sketched. The most particular among these conditions is
that the data base referred to in the argument has to be more or less identical to
the data base of the addressee (PA5.5).

A  valid  probabilistic  argument  x  is  adequate  for  rationally  convincing  an
addressee h (hearer) at t of the thesis (q) of x and for making him adopt the
thesis’ probability for himself iff condition PA5 holds:

PA5: Situational adequacy:

PA5.1:  Rationality  of  the  addressee:  The  addressee  h  (at  t)  is  linguistically
competent, open-minded, discriminating and does not have a sufficiently strong
justification for the thesis q.

PA5.2: Argumentative knowledge (of the addressee): The addressee h at t knows
at least implicitly the idea of the probability calculus and the mathematics used in
x.

PA5.3: Explicitness: If x is not an ideal argument such that r° does not contain all
the reasons of the corresponding ideal argument the addressee h at t is able to
add the most important of the missing reasons.

PA5.4: Acceptance of the reasons: The addressee h at t has recognised the truth
of the reasons ri of x and, in the case of non-ideal arguments, of its corresponding
ideal or is able to recognise them immediately. And

PA5.5: Data base: The data base dht of h at t is identical to d or so near to d that
the  resulting  probabilities  regarding  the  reasons  ri  and  the  thesis  q  remain
unaltered.

The  just  defined  probabilistic  arguments  are  not  special  kinds  of  deductive
arguments or reducible to them. One highlight of the present approach is to make
the  relativity  of  probabilistic  arguments  to  specific  data  bases  explicit,  by



inserting a reference to the data base d, thus resolving the problems of logical
non-monotonicity. As a consequence of this explicit relativity to the data base, the
arguments can be and have to be (cf. PA2.2, inferential validity) deductively valid;
in addition their reasons can be true – even the singular probability judgements
among the premises. The problem of probabilistic arguments, i.e. to be only a
substitute for stronger arguments in case of insufficient knowledge, which leads
to non-monotonicity, however, cannot be eliminated entirely. Here it has been
shifted to the pragmatic adequacy conditions, where PA5.5 requires to use an
argument with a data base fitting to the addressee. Of course, the addressee may
be convinced by an argument that refers to a different data base dj  that the
probability of  an event a  on the data base dj  is  pj;  however,  if  dj  is  not the
addressee’s data base at the time being he will not adopt pj as his probability.
Deductive arguments do not contain any comparable restriction because they are
not relative to the data base; for being rationally convincing the addressee has to
be convinced of their premises, yes; but this is not yet a general dependency on
the data base. Instead of being logically non-monotonic, probabilistic arguments
as they are conceived here are “pragmatically non-monotonic” in the sense of
getting pragmatically irrelevant when the data base does no longer fit to the
addressee’s changed data base. Further irreducible differences with respect to
deductive arguments then are that this relativity to the data base also shows up in
the adequacy in principle condition (PA3.3.2), that references to a data base are
part of  the structure of ideal probabilistic arguments (cf. PA0.2.1, PA0.2.2.2) and,
finally, the best evidence requirement (PA2.3).

The just provided definitions show that it is possible to develop clear, reasoning-
guiding and epistemologically justified criteria for probabilistic arguments, which
do justice to requirements of objective validity as well to adaptation to the specific
epistemic limits of the argument’s addressees.[vii]

NOTES
[i] Proponents of the epistemological approach to argumentation are e.g. Mark
Battersby, John Biro, Richard Feldman, Alvin Goldman, Christoph Lumer, Harvey
Siegel and Mark Weinstein. An overview of this approach (including bibliography)
is provided in: Lumer 2005a.
[ii]  Several  other  forms  of  probabilistic  arguments  and  fallacies  have  been
analysed  (e.g.  Korb  2004;  Hahn  &  Oaksford  2006;  2007),  without  however
providing precise criteria for such arguments.



[iii] This dismissal as a general theory does not exclude that equiprobability
settings play an important role in situations under complete uncertainty about
frequentist probabilities.
[iv] Here and in the following I omit the time variable of ‘belief’.
[v] The tendency of evidence should be distinguished from the degree or strength
of evidence. We may have strong or weak evidence with the same tendency, i.e.
for the same probability. We may e.g. have counted 30 black and 60 white balls
before putting them into an urn and therefore have strong evidence that the
probability of picking a white ball at random is 2/3; and, in a different setting, we
may have picked (with replacement) nine balls from the urn, three of them being
black and six of them being white, and because of this have the weaker evidence
that the probability of picking a white ball at random is again 2/3.
[vi] That s is “linguistically competent” shall mean that she knows the semantics,
syntax and expressions used in the argument; this includes knowledge about the
probability  concept  and  the  parts  of  the  probability  calculus  used  in  the
argument. “Open-mindedness” refers to the disposition to form one’s opinions by
rational cognition and not on the basis of prejudices or emotions. A person is
“discriminating” if she has the basic faculty of basic cognition and is able to
organize respectively complex processes of cognition. (Cf. Lumer 1990, pp. 43 f.)
[vii] I would like to thank two anonymous referees for their valuable comments.
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