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1. Three Theses
This  paper  focusses  on  three  traditional  distinctions
commonly  made  by  argumentation  theorists.  The
distinctions generally correlate with one another and work
together in picturing argumentation and framing puzzles
about it. Not everyone holds all or any of them – maybe

not even most. But the distinctions are invoked and alluded to often enough that
we think it useful to challenge them directly.
First, there is a distinction to be drawn between justifying the truth or falsity of a
proposition or claim and justifying acceptance or rejection of a proposition or
claim. The truth or falsity of a proposition is a matter of independent reality.
Acceptance  or  rejection  of  a  proposition  is  a  voluntary  decision.  Rational
justification of acceptance or rejection is a matter of choice, a weighing of costs
and benefits. Rational justification of truth or falsity is a matter of evidence, a
balancing  of  facts.  Justifying  truth  or  falsity  is  a  matter  of  proof;  justifying
acceptance or rejection is a matter of persuasion.
Second, a distinction should be maintained between arguments over propositions
of fact and arguments about propositions of policy.  It  is  a distinction closely
related to the first in its rationale. It relies on such matters as the difference
between description and evaluation, “is” and “ought”, reasons and motivations,
epistemology and politics, epistemic reason and practical reason.
Third,  a  distinction  should  be  maintained  between  demonstrative  proof  and
plausible  demonstration.  The  former  kinds  of  arguments  are  associated  with
strong conclusions involving direct evidence, certainty, necessity, infallibility and
the like. The latter kinds of arguments deal with a balance of considerations,
presumptions, probabilities, and tentative conclusions.

One can, of course, maintain all  these distinctions as conceptual distinctions,
which is to say that these distinctions mean different things, they have different
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implications, and they participate in different systems of concepts and puzzles.
But presumably these distinctions are more than just conceptual. Presumably they
point  to  real  differences in the way in which argumentation is  conducted in
different domains and help to explain real differences in our sense of the quality
of those arguments.
Traditionally,  at  least,  scientific  research has  been held  up as  a  paragon of
demonstrative proof concerning the truth and falsity of propositions of fact. Its
procedures of  inference are highly formalized through statistical  analysis.  Its
research  questions  are  answered  on  the  basis  of  quantifiable  facts  that  are
scrupulously guarded from questions of value. Its empirical claims seem to be as
directly demonstrated and as certain as one can get. If these distinctions hold up
anywhere, they should hold up here. In fact, there are important ways in which
these distinctions blur when we examine the logic of the statistical analysis upon
which modern scientific research depends.

2. Statistical Reasoning as Plausible Reasoning
The core of statistical analysis in empirical research is the logic of hypothesis
testing. Factual propositions that are derived from theory and predict empirical
differences (research hypotheses) are tested against observed differences. The
test  occurs  by  setting  the  research  hypothesis  against  a  competing,  default
hypothesis – typically the null hypothesis that there are no real differences. Now,
it isn’t news to anyone that the test of whether the observed differences best
match the research or the null hypothesis is a matter of probabilistic inference.
But  it  is  worth noting that  the logic  of  hypothesis  testing is  also a  logic  of
presumptive reasoning. In fact, the statistical inference amounts to argumentum
ad ignorantiam (cf. Walton, 1996a).
Setting very high the level of proof required to establish the research hypothesis
creates a heavy presumption in favor of the null hypothesis. In the absence of
compelling evidence to the contrary, normal researchers assume their data shows
that no actual effects or differences are present (or, that only trivial effects or
differences exist). This is what tests of statistical significance amount to (even
when taken together with tests of statistical power). As Cohen (1988: 1-2) puts it:
When the behavioral  scientist  has occasion to don the mantle of  the applied
statistician, the probability is high that it will be for the purpose of testing one or
more  null  hypotheses,  i.e.,  “the  hypothesis  that  the  phenomenon  to  be
demonstrated is in fact absent [Fisher, 1949, p.13].” Not that he hopes to “prove”
this hypothesis. On the contrary, he typically hopes to “reject” this hypothesis and



thus  “prove”  that  the  phenomenon  in  question  is  in  fact  present.  Let  us
acknowledge at the outset the necessarily probabilistic character of statistical
inference, and dispense with the mocking quotation marks about words like reject
and  prove.  This  may  be  done  by  requiring  that  an  investigator  set  certain
appropriate probability standards for research results which provide a basis for
rejection of  the  null  hypothesis  and hence for  proof  of  the  existence of  the
phenomenon under test. Results from a random sample drawn from a population
will only approximate the characteristics of the population. Therefore, even if the
null hypothesis is, in fact, true, a given sample result is not expected to mirror
this fact exactly. Before sample data are gathered, therefore, the investigator
selects some prudently small value a (say .01 or .05), so that he may eventually be
able to say about his sample data,”If the null hypothesis is true, the probability of
the obtained sample result is no more than a,” i.e. a statistically significant result.
If he can make this statement, since a is small, he said to have rejected the null
hypothesis “with an a significance criterion” or “at the a significance level.” If, on
the other hand, he finds the probability to be greater than a, he cannot make the
above statement and he has failed to reject the null hypothesis, or, equivalently
finds it “tenable,” or “accepts” it, all at the a significance level.

The presumption is that unless the variability between observed groups is sizably
greater than the variability within the groups, the observed differences should be
assumed to be reflections of random error in sampling and measurement rather
than reflections of real differences between populations sampled.
That the logic of statistical inference is a logic of plausible reasoning based on
presumption  is  something  that  scientists  and  statisticians  implicitly  know  –
though  commonly  they  explicitly  disavow  such  knowledge.  The  conventional
circumlocution  used  when  a  significance  test  fails  to  support  the  research
hypothesis is that the researcher “fails to reject the null hypothesis.” This way of
talking parallels the argumentation theorist’s common explanation for why ad
ignorantiam appeals are fallacious: One cannot conclude that a proposition is true
simply because one has failed to show that the proposition is false, or vice versa.
One can only conclude that no conclusion can be drawn. One doesn’t know the
status of the proposition one way or the other. For example, Jaccard (1983: 129)
reminds us:
When an experimenter obtains a result that is consistent with the null hypothesis
(when it falls between the range of -1.96 and +1.96 instead of outside of it)
technically, he or she does not accept the null hypotheses as being true. Rather



he or she fails to reject the null hypothesis. In principle, we can never accept the
null hypothesis as being true via our statistical methods; we can only reject it as
being untenable.

Similarly, Williams (1992: 79), who talks about “accepting” as well as “rejecting”
the null hypothesis, nevertheless warns us:
If a study results in failure to reject a null hypothesis, the researcher has not
really “proved” a null hypothesis, but has failed to find support for the research
hypothesis. It is not unusual to find studies with negative outcomes where the
research has placed a great deal of stock in “acceptance” of null hypotheses. Such
interpretations, strictly speaking, are in error because the logic of a research
design incorporates the testing of some alternative (research hypothesis) against
the  status  quo  (null  hypothesis).  Although  failure  to  find  support  for  the
alternative does leave one with the status quo, it does not rule out other possible
alternatives. Put into practical terms, be skeptical of interpretations of unrejected
null hypotheses.

Phrases like “technically” and “strictly speaking” are the sorts of euphemisms
methodologists use when theory crashes into common sense but don’t want to
have to admit they are sunk. (Keppel, 1991, uses the euphemistic halfway phrase,
“retain  the  null  hypothesis.”)  And,  of  course,  the  reason  such  theoretical
qualifications are set out in the first place is because normal researchers openly
disregard them in practice.
It  seems  then,  that  the  advocate  of  the  traditional  distinction  between
demonstrative proof and plausible argument faces a dilemma.  Like so many
statistical  textbook authors,  the advocate can conclude that  normal  scientific
research is widely based on fallacious reasoning and needs to be corrected. Or,
the  advocate  can conclude that  well  done quantitative  empirical  research in
science  really  is  based  on  a  presumptive  form  of  reasoning.  Either  way,
demonstrative proof seems to be missing from the picture.
We think the reason it  is missing is because it  is not needed to redeem the
rationality of scientific inference, if it ever is needed or ever exists at all. As
commonsense  reasoners,  scientific  researchers  know  that  arguments  from
ignorance are  legitimate  forms of  plausible  reasoning when one has  a  good
reason  for  setting  a  presumption  in  the  first  place.  Quantitative  analysis  in
scientific  research  is  plausible  reasoning.  It  is  formally  rigorous  plausible
reasoning, but it is a kind of plausible reasoning nevertheless: A kind in which



presumptions are established as the levels of proof (in the form of probability
assessments) required to accept research hypotheses.

3. Statistical Propositions as Propositions of Policy
The level of proof required to demonstrate the research hypothesis  is commonly
a matter of convention. Alpha levels in significance testing are ordinarily set at
.05. There can be good reason for setting this level of proof that goes beyond a
purely arbitrary decision. The nature of this broader rationale once again proves
instructive. For the rationale is one in which argumentum ad consequentiam plays
the decisive role. And this suggests to us that another distinction carries little
weight: the distinction between propositions of fact and propositions of policy.
Argumentation  theorists  have  long  recognized  that  while  ad  consequentiam
reasoning  is  an  illegitimate  proof  of  a  proposition  of  fact,  it  can  provide
compelling support for a proposition of policy (Walton, 1996b). In general, this is
because the former would involve an illicit shift from a question of what ‘ought’ to
be, or one of value, to a question of what ‘is,’ or one of fact. And this is said to be
an intrinsic difference between propositions of policy and propositions of fact. Yet
this does not appear to be a scrupulously guarded distinction in the logic of
hypothesis testing.
Go back to the question of setting the level of statistical significance in hypothesis
testing. Textbook authors commonly explain that the level of proof necessary to
accept and reject the null and research hypotheses is dependent on both the risk
of inaccuracy and the cost  of inaccuracy. In statistical jargon, this process is
labeled as committing Type I and Type II errors. Type I error is committed when
one rejects the null hypothesis when the null hypothesis is in fact ‘true’. Type II
error takes place when one accepts (fails to reject) the null hypothesis when the
null  hypothesis  is  in  fact  ‘false’.  Rosenthal  and Rosnow (1991:  41)  colorfully
describe these two errors an inferential mistake involving “gullibility” (Type I
error) while Type II error involves being “blind to a relationship.”
These errors are inversely related: when the likelihood of committing Type I error
is  decreased  the  likelihood  of  Type  II  error  is  increased.  The  probability  of
committing either type of error is determined by setting an alpha level required to
accept a hypothesis. A higher than usual alpha level (say, p = .10) increases the
likelihood of committing Type I error while a lower than usual alpha level (say, p
= .01) increases the possibility of committing Type II error.
When  explaining  the  rationale  for  this  deciding  the  alpha  level,  statistical
theorists almost uniformly turn to a utility model of decision-making, calling on



researchers to balance risks and costs of the two types of errors. Summers, Peters
and Armstrong explain that the goal of researchers is in deciding which error to
make, and “it would make sense to choose limits that balance expected costs of
Type I and Type II errors. (1981: 248)” Likewise, Mood and Graybill (1963: 279)
explain, “to arrive at a reasonable value for alpha requires an experimenter to
weigh the consequences of making a Type I and Type II error.” Rosenthal and
Rosnow (1991: 455) suggest that the balancing is in effect a practical judgment of
consequences:  If  an  investigator  has  decided  to  set  alpha  (a)  at  .05  and  is
conducting a test of significance with power = .40, beta (b) will be 1-.40, or .60.
Then the ratio of b /a will be .60/.05 = 12 implying a conception of Type I errors
(a) as 12 times more serious than Type II errors (b).
The consequentiality of factual decision-making, however, is most apparent when
statistics textbooks create a practical context. Heiman (1992: 292-293) explains
the reasoning with the following concrete illustration:
We typically set alpha at .05 because .05 is an acceptably low probability of
making a Type I error. This may not sound like a big deal. But the next time you
fly in an airplane, consider the possibility that the designer’s belief that the wings
will stay on may actually be a Type I error. A 5% chance is scary enough – we
certainly  do  not  want  more  than  a  5% chance  that  the  wings  will  fall  off.
Sometimes we want to reduce the probability of making a Type I error even
further, and then we usually set alpha at .01. For example, we might have set
alpha at .01 if our smart pill [a hypothetical intelligence-inducing pill] had some
dangerous side-effects. We would be concerned about subjecting the public to
these side-effects, especially if the pill does not work. Intuitively, it takes even
more to convince us that the pill works, and thus there is a lower probability that
we will make an error.
Similarly, Hays (1994: 284) explains: Within contexts such as the test of a new
medication  in  which  Type  I  error  is  abhorrent,  setting  a  extremely  small  is
manifestly  appropriate.  Here,  considerations  of  Type  II  error  are  actually
secondary. In some instances in a social science as well, Type I error clearly is to
be avoided, and from the outset the experimenter wants to be sure that this kind
of error is very improbable.

Jaccard (1983: 131) also illustrates the reasoning in terms of the widely used
medical scenario:
The tradition of adopting a conservative alpha level in social science research
evolved  from  experimental  settings  where  a  given  kind  of  error  was  very



important and had to be avoided. An example of such an experimental setting is
that of testing a new drug for medical purposes, with the aim of ensuring that the
drug is safe for the normal adult population. In this case, deciding that a drug is
safe when, in fact, it tends to produce adverse reactions in a large proportion of
adults is an error that is certainly to be avoided. Under these circumstances a
small  alpha level  is  selected so as  to  avoid making the costly  error.  With a
conservative alpha level, the medical research takes little risk of concluding that
the drug is safe when actually it is not. Thus, the practice of setting conservative
alpha levels  evolved from situations  where  one  kind  of  error  was  extremely
important and had to be avoided if possible.

Keppel (1991: 56), on the other hand, talks about what is important simply in
terms of the more general intellectual and academic costs and benefits of the
decision:
Every researcher must strike a balance between the two types of error. If it is
important to discover new facts, then we may be willing to accept more Type I
errors and thus increase the rejection region. On the other hand, if it is important
not to clog up the literature with false facts, which is one way to view Type I
errors, then we may be willing to accept more Type II errors and decrease the
rejection region.

All these authors and many others discuss the decision-making process in terms
of consequences, costs, importance, seriousness, or severity of error. In other
words,  research  conclusions  are  inextricably  bound  up  in  ad  consequentiam
reasoning. In fact, the seeming objectivity of the “.05″ level of significance testing
is a reflection of  just  the opposite – an arbitrary judgment based on lack of
sufficient information:
The inverse relationship of the risks of the two types of error makes it necessary
to strike a reasonable balance. . . . But conventions are useful only when there is
no other reasonable guide. . . . In much research, of course, there is no clear basis
for deciding whether a Type I or Type II error would be more costly, and so the
investigator  makes  use  of  the  conventional  level  of  determining  statistical
significance. (Sellitz, Jahoda, Deutsch & Cook, 1959: 418).

When making a decision regarding making type I  or  type II  errors,  the loss
function associated with the two errors must be known before a rational choice
concerning  alpha  can  be  made.  However,  experimenters  in  the  behavioral
sciences are generally unable to specify the losses associated with the two errors



of inference. The use of the .05 or .01 level of significance in hypothesis testing is
a convention. (Kirk, 1968: 2, sec. 1.5).
Pretty clearly then, the rationale for statistical significance testing relies heavily
on  argumentum ad  consequentiam.  It  seems  then,  that  the  advocate  of  the
traditional  distinction between propositions of  policy  and propositions of  fact
faces a dilemma. Unless this distinction is a chimera, either the advocate must
conclude  that  statistical  argument  is  grounded  in  a  real  howler  (illicitly
converting ‘ought’ to ‘is’), or the advocate can conclude that scientific reasoning
is not really factual reasoning at all. Neither option seems to be attractive to
those who would maintain the empirical utility of distinguishing propositions of
fact and policy.

4. The Pragmatics of Decision-Making
We think both dilemmas above are a reflection of still a deeper breakdown in
distinctions:  that  between justifying the truth and falsity  of  propositions  and
justifying the rationality of their acceptance or rejection. We will not bother to
rehearse the argument that statistical  decision-making is  concerned primarily
with the latter and only indirectly with the former. The briefest review of the
language  quoted  above  should  be  convincing  enough.  Quantitative  empirical
research in science does not justify the truth or falsity of empirical propositions
per  se;  rather  it  justifies  the  rationality  of  accepting  or  rejecting  such
propositions. Scientific theory and empirical knowledge is a matter of deciding
what to treat as true or false. All of the language of statistical inference works at
that  level.  It  is  a  meta-level.  It  should  not  be  surprising  then,  that  ad
consequentiam reasoning – matters of utility and usefulness rather than truth –
should rest at the heart of empirical knowledge and reasoning. And it should not
be surprising either that statistical inference and scientific reasoning is plausible
reasoning based on practical presumptions. But if that is what we find in this
domain of knowledge, where exactly would we find anything else?
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