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1. Introduction
Some  arguments  have  premisses  which  make  their
conclusions probable. Or so, at least, it  seems. But the
attempt to understand how and under what circumstances
they  do  so  has  proved  surprisingly  difficult.  Carnap’s
project  of  an  inductive  logic  (Carnap  1962/1950)

foundered on the inability to single out a unique measure function which would
assign initial probabilities to each set of structurally isomorphic state descriptions
(Carnap & Jeffrey 1971, Jeffrey 1980). On a Bayesian personalist approach, which
goes back to F. P. Ramsey’s 1926 paper “Truth and probability” (1990/1926), an
initial purely subjective (hence “personal”) assignment of probabilities is modified
according  to  Bayes’  theorem  in  the  light  of  subsequent  evidence  (hence
“Bayesian”);  Bayesian  personalism has  recently  had  vigorous  defenders  (e.g.
Howson & Urbach 1989, Kaplan 1996), but a critical examination by John Earman
(1992)  concluded  that  it  still  faces,  among  other  difficulties,  the  so-called
“problem of old evidence” (explaining how old evidence can make a hypothesis
more probable,  as the already known perturbation in the orbit  of  the planet
Mercury evidently did for Einstein’s general theory of relativity). John L. Pollock
has attempted to ground a comprehensive theory of  inductive reasoning and
inductive argument on what he calls “nomic probability” (Pollock 1990: 25), the
kind of objective probability involved in statistical laws of nature. Various authors
have developed criteria for “argumentation schemata” covering such types of
argument as enumerative induction (particular and general; cf. Russell (1948)),
eliminative induction (inference to the best explanation), and so-called “direct
inference”; such ad hoc approaches, exemplified by Grennan (1997), often seem
plausible, but need justification.
In this  paper,  I  wish to make a start  on developing criteria  for  determining
whether the premisses of an argument make its conclusion probable; we could
say  that  such  a  situation  is  one  in  which  the  premisses  “probabilify”  the
conclusion, so the subject of this paper is probabilification.
I propose to start from Stephen Thomas’ discussion of an example in the 1997
(fourth) edition of his Practical Reasoning in Natural Language (Thomas 1997:
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130-131). In his discussion, Thomas maintains a position adopted in print 13 years
earlier (Thomas 1984: 32), even though a subsequently published paper (Nolt
1985: 56) rejected that position. It will  turn out that, in this dispute, Nolt is
correct and Thomas is mistaken. The textbook discussion makes clear, in a way
that the earlier paper did not, why Thomas made his mistake. His reason is a
seductive one, and exposing its inadequacy has, I shall maintain, some negative
lessons  for  the  evaluation  of  enumerative  induction  and,  more  generally,  of
inferences from confirmatory evidence to the probable truth of any hypothesis
under investigation.

2. Thomas’ discussion
Thomas discusses the strength of support given to the conclusion of the following
invented argument by its premisses:
1.  The  fifty  marbles  in  this  bag  were  thoroughly  stirred  and  mixed  before
sampling.
The first forty-eight marbles examined, each chosen at random, were all clear
glass.
Therefore, the remaining two marbles are both clear glass (Thomas 1997: 130).

In its surface form, this argument projects a property of all examined members of
a class to two unexamined members of that class. But, since the two marbles in
the  bag  are  the  only  unexamined  members  of  the  class,  the  argument  by
implication projects the property of being clear glass to all members of the class.
Thus, although in its external form it is an example of what is commonly called
“particular  enumerative induction”,  its  logic  is  that  of  what  is  usually  called
“universal enumerative induction” (Russell 1948).
Thomas writes the following about his example: “The large proportion of marbles
examined and the fact that the marbles were thoroughly stirred before sampling
and were chosen at random, all contribute to the strength of this reasoning. Yet
the reasons do not make the truth of the conclusion totally certain. It remains
possible that one (or even both) of the two marbles still in the bag is not made of
clear  glass.  Although  we  can  imagine  that  the  reasons  are  true  while  the
conclusion is false, this situation is unlikely. Consequently, the step from these
reasons to the conclusion is rated as strong [emphasis in original – DH]. Unlikely
as it may be, the logical possibility that a remaining marble is not clear glass
(despite the fact that the first 48 drawn at random were clear glass) makes this
step of reasoning less than 100 per cent certain, the highest possible degree of



strength.” (Thomas, 1997: 131)
In calling the step from the reasons to the conclusion strong, Thomas is claiming
that the reasons if true make the conclusion highly probable, though not certain.
As he puts it: “A practical measure of a strong [emphasis in original – DH] degree
of support is that the reasons be related to the conclusion in such a way that the
truth of the reasons, if they were true, would establish the truth of the conclusion
with a degree of certainty strong enough to count on it with confidence for all
realistic purposes.” (Thomas 1997: 130)
In the earlier exchange in Informal Logic, Thomas maintained that the probability
of the conclusion in a similar example was “well in excess of 80%,” but did not
explain how he arrived at such a quantitative estimate (1984:32) (In the earlier
example, the premiss was that 49 of 50 marbles in an urn had been examined and
found to be blue; the conclusion was that the 50th marble will also be blue.) Nolt
replied that “in fact there is no way to calculate such a probability from the
information Thomas gives… We can,  without violating any mathematical  law,
assign that proposition [that  the next  marble to be selected from the urn is
blue–DH] any probability we like.”  (1985: 56) Perhaps because Nolt  gave no
argument for his counter-claim, Thomas obviously remained unconvinced.

3. The mistake
Thomas  appeals  to  its  being  unlikely  “that  the  reasons  are  true  while  the
conclusion  is  false”  (1997:131).  In  other  words,  he  regards  as  unlikely  the
following situation: 48 marbles selected at random without replacement from this
jar containing 50 marbles are clear glass, while one or both of the non-selected
marbles is not clear glass. Now we might estimate the value of this probability as
follows. If the bag contains 49 clear marbles, this probability is 2/50, or .04.[i] If
the bag contains 48 clear marbles, this probability is 1/1225, or .00082.[ii] If we
are given only that the bag contains either 48 or 49 clear marbles, then the
probability is somewhere between these two values, depending on what relative
likelihood we assign to the two possibilities.
Since the probability of a set of mutually exclusive and jointly exhaustive events
sums to 1, then by subtraction the probability of the remaining two marbles being
clear glass is .96 in the one case and .99918 in the other, or some value in
between if we do not know which of the two cases obtains. We might then be
inclined to take one of these values, or the range between them, as the likelihood
that the conclusion of our argument is true, given that the reasons are true. But
this would be a mistake. For the argument corresponding to the probability of .96



(or .99918, or the range between) is the following argument:
2. The fifty marbles in this bag, of which 49 (or 48, or either 48 or 49) were clear
glass and the remaining one was not (or two were not), were thoroughly stirred
and mixed before sampling. The first forty-eight marbles, each chosen at random,
were examined. Therefore, the remaining two marbles are both clear glass.

Although verbally very similar, that is logically a very different argument from (1),
the argument whose inference we are evaluating, since it includes in the premiss
the assumption that one of the original 50 marbles is not made of clear glass (or
two are not) and it does not include the information that the 48 examined marbles
are made of clear glass; indeed, this original premiss is incompatible with the
combination of the new argument’s premiss and its conclusion. What has gone
wrong? In construing as we did the likelihood that the reasons are true while the
conclusion  is  false,  we  have  treated  the  problem  as  one  of  estimating  the
probability of a given outcome of a not yet completed stochastic (indeterministic)
process. But our problem does not involve any such stochastic processes.
We are supposing that the 48 marbles have already been selected, and that they
are all clear glass. There is no indeterminacy about their colour, or about the
colour of the remaining marbles in the bag. So the probability we are interested
in is not a probability in any frequency sense, but an epistemic probability: the
degree  of  confidence  in  the  truth  of  the  conclusion  which  the  truth  of  the
premisses would give to a rational person.
Further,  we have confused a conditional probability with the probability of  a
conjunction. Specifically, we have confused the probability that the conclusion is
false, given that the premiss is true, with the probability that the conclusion is
false while the premiss is true, where this “while” is construed as a conjunction.
Given  the  standard  constraints  imposed  on  a  probability  function  by  the
Kolmogorov  axioms[iii],  we  can  equate  the  probability  that  an  argument’s
conclusion is true, given that its premisses are true, with 1 minus the probability
that the conclusion is false, given that its premisses are true. (p(C|P) = 1 – p(not
C|P).)[iv] But in general we cannot equate the probability that the conclusion is
false, given that its premisses are true, with the probability that the conclusion is
false while its premisses are true. (In general, p(not C|P) _ p(not C & P)).
The possibility of such a confusion shows that there is a danger of misapplying
Thomas’ general test for assessing the degree of support given to a conclusion by
its premisses. Since this general test has been incorporated into other textbooks
(e.g. Pinto & Blair 1993; Pinto, Blair & Parr 1993), it is worth noting the need for



care  in  how  it  is  stated.  Thomas  proposes  (1997:  135-136)  the  following
procedure for estimating degree of support.
First, ask whether, supposing the reasons are true, there is any way in which the
conclusion nevertheless could be false.
Second, if there are such ways, estimate how likely it is that the most likely of
these ways is true; if there are no such ways, the argument is deductively valid.
Third,  assess the degree of  support  of  the conclusion by the reasons as the
complement of this estimate: strong if the most likely counterexampling way is
highly unlikely, moderate if it is unlikely but not highly unlikely, weak if it is only
somewhat unlikely, nil if it is at least as likely as not. Care needs to be taken in
applying the first of these three steps. One is not looking for a way in which the
reasons are true and the conclusion false. One is looking for a way in which, given
that the reasons are true, the conclusion is nevertheless false. The difference is
subtle but, as the above discussion indicates, important.

4. Some calculations of epistemic probability
We  must  try,  then,  to  calculate  an  epistemic  conditional  probability.  It  is
important to notice that the estimation of such a probability depends not only on
the information stated in the premisses, but on other background information at
our disposal.  For example,  we assume that  the number of  marbles in a bag
changes only by removing or adding marbles to the bag; contrast the number of
drops of water in a glass, or the number of rabbits in a cage, or the number of
mothballs in an open jar. We assume that no marbles left or entered the bag after
it had 50 marbles in it, except for the 48 which were examined; in particular, we
assume, although the argument does not explicitly say so, that none of the 48
marbles  were  put  back  in  the  bag.  We  also  assume  that  marbles  do  not
spontaneously change colour on their own; contrast chameleons or mood rings.
We cannot ignore this information, since no calculation is possible without making
some such assumptions. Such background information plays an even bigger role
in more complex real cases. The need to take it into account in estimating the
degree of probabilistic support of a hypothesis by evidence is Carnap’s so-called
“total evidence requirement” (Carnap 1962/1950: 211-213; cf. Pollock 1990: 133).

We can get some idea of the range of probabilistic support in our example by
considering  some  assumptions  which  might  form  part  of  our  additional
background information in a real-life  situation.  I  shall  consider in turn three
cases.



Case 1:  Uniformity:  The marbles were put in the bag from a single uniform-
coloured batch from a production line. (Cf. Hume’s assumption that nature is
uniform. In fact, nature is not uniform in all respects, but we often have, or think
we have, reason to think that we are dealing with a sortal property of a natural
kind, e.g. the solubility of a pure substance in a pure substance.) In this case, the
conditional  epistemic  probability  that  the  conclusion  is  true  is  1,  since  the
premisses together with the background information entail the conclusion. Note
that in this case the background information makes it unnecessary to examine
more than one marble from the bag, just as in many scientific experiments or
systematic  observations  we  do  not  need  to  accumulate  a  large  number  of
instances, just enough to make us confident that our lab technique was good and
our measurements were accurate.
Case 2: Independence: The marbles in the bag were selected by a random process
from a very large stock of marbles of various colours, the proportion of clear glass
marbles in this stock being some known ratio r. (For example, the stock had 10
different colours of marble; each colour was assigned a distinct one-digit number,
and a random number table was used to select by number the sequence of colours
of the marbles put in the bag.) The stock was large enough that taking 50 clear
glass marbles from it would not affect substantially the proportion of clear glass
marbles in the remainder of the stock. The observed result is of course highly
improbable in this case. But improbable events do happen. And drawing 48 clear
glass marbles in succession from the bag does not change the probability, relative
to the specified background information, that the remaining two marbles are also
clear glass; to think otherwise is to subscribe to a fallacious form of the law of
large numbers. So the probability is r that the 49th marble is clear glass, and is
also  r  that  the  50th  marble  is  clear  glass.  Since,  given  the  background
information,  these  two  events  are  independent,  the  probability  of  their
conjunction  is  the  product  of  the  two  probabilities,  or  r2.
Case 3: The travelling gambler: The marbles were put in the bag by a roving
gambler who has read Thomas’ textbook. This nefarious individual goes to college
and university campuses where Thomas’ textbook is used, and proposes a sinister
betting arrangement to unsuspecting students who have read Thomas’ discussion
of example (1). He shows them his bag with 50 marbles, which they can count for
themselves (without looking inside the bag). He invites them to draw 48 marbles
from the bag. If all 48 marbles are clear glass, he offers them, if they are willing
to bet a sizeable sum of money, attractive odds that the remaining two marbles
are also clear glass,  say 3:1 in his  favour.  (The students in fact  believe the



chances are overwhelming that the remaining two marbles are clear glass, so
they are happy to give him such favourable odds.) There is always a non-clear
marble in the bag. Of course, 24 out of every 25 times the odd marble is drawn
among the 48, and there is no bet. But every 25th time the roving gambler cleans
up. In this case, the probability of the conclusion being true, given the truth of the
premisses, is 0, since the premisses and the background information together
entail the falsehood of the conclusion.

These  three  cases  collectively  vindicate  Nolt’s  claim  that  “we  can,  without
violating  any  mathematical  law,  assign  that  proposition  [in  his  example,  the
proposition that the remaining ball is blue–DH] any probability we like.” (1985:
56) The additional background information supplied in each case does not alter an
antecedently  determined  epistemic  probability.  Rather,  it  supplies  enough
information to enable a definite probability to be calculated at all.  Since the
resulting probabilities  range from 0 to  1,  it  seems obvious  that,  by  suitable
adjustment of background assumptions, we can indeed assign any probability we
like to the proposition that the remaining two marbles in the bag are clear glass,
given the information in the premisses of (1). Without more information than that
supplied  in  the  premisses,  we  cannot  attach  even  a  qualitative  degree  of
confidence to the conclusion, relative to the premisses.

5. The Bayesian approach
The same result  obtains  in  the  three cases  if  we adopt  as  the  basis  of  the
epistemic  probability  we  are  estimating  some form of  Bayesian  personalism,
which takes our degree of confidence in a proposition to be a function of the odds
we would think it fair to give in a bet that the proposition is true, where the
system of such confidence assignments is constrained at least by the probability
calculus.[v] If we are absolutely confident in a proposition’s truth, then we would
think it fair to give somebody who doubted its truth as high odds as the person
wished, e.g. a million to one. If we think it just as likely as not that the proposition
is true, then we would think it fair to give odds of 1:1 that the proposition is true.
In general, if the odds we think fair to give on the truth of a proposition are x:y,
then we have a confidence of x ÷ (x + y) in the truth of the proposition, and vice
versa.[vi]
The Bayesian approach allows us to use Bayes’ theorem to calculate the epistemic
probability that a hypothesis H is true given certain new evidence E, a probability
generally referred to as the posterior probability, provided we are given three



other epistemic probabilities, each construed as an assignment of a degree of
confidence to a proposition. First, we need the prior probability of the hypothesis,
that  is,  the  probability  that  the  hypothesis  is  true,  given  our  background
information independently of the new evidence. (I shall call this “p(H/K)”, where p
is  the  probability  function,  H  is  the  hypothesis  and  K  is  our  background
information  apart  from  the  new  evidence.)  Second,  we  need  the  posterior
likelihood, the likelihood of the evidence on the assumption that the hypothesis is
true,  again  assuming  the  same  background  information  which  we  have
independently of the new evidence. (I shall call this “p(E/H & K)”, where E is the
new evidence.) Third, we need the prior likelihood of the evidence, the likelihood
that  the  evidence is  true  on the  assumption of  our  background information,
without assuming the truth of the hypothesis under investigation. (I shall call this
“p(E/K)”.) Bayes’ theorem tells us that, if the prior likelihood is not zero, the
posterior  probability  of  a  hypothesis  on new evidence is  its  prior  probability
multiplied by the ratio of the posterior likelihood of the evidence to its prior
likelihood:
(3) p(H/E & K) = p(H/K) × p(E/H & K) ÷ p(E/K).

The proof of the theorem rests on the definition of a conditional probability p(A/B)
as the result of dividing the probability that both A and B obtain by the probability
that B obtains, provided that this latter probability is not zero. If one replaces the
conditional probabilities in Bayes’ theorem according to this definition, one sees
that the theorem is correct, provided that neither the prior probability of the
hypothesis nor the prior likelihood of the evidence is zero.
In argument (1), as noted in section 2, the hypothesis can be regarded as the
hypothesis that all the marbles are clear glass. Since the evidence of the first 48
marbles drawn being clear glass is a logical consequence of the hypothesis that
all 50 marbles are clear glass (given implicit background assumptions such as
those mentioned at the beginning of section 4 above), the posterior likelihood of
the evidence is 1. Hence, in this case the posterior probability of the hypothesis
will  simply  be  the  prior  probability  of  the  hypothesis  divided  by  the  prior
likelihood of the evidence.
Case 1: On the uniformity assumption, the prior probability that all the marbles
are clear glass is, we may suppose, some value r. The prior likelihood that the
first 48 marbles drawn from the bag will be clear glass, given the uniformity
assumption  but  not  assuming  the  truth  of  the  hypothesis,  is  also  r.  So  the
posterior probability is 1.



Case 2: On the independence assumption, the prior likelihood that any marble in
the bag will be clear glass is r. Since our assumption makes the colour of each
marble drawn independent of the colour of any other marble drawn, the prior
probability of the hypothesis that all 50 marbles are clear glass is r50, and the
prior likelihood that the first 48 marbles drawn from the bag will be clear glass is
r48. Hence the posterior probability of the hypothesis is r50 – 48, or r2.
Case 3: On the travelling gambler assumption, the prior probability that all 50
marbles in the bag are clear glass is 0. Hence, whatever the prior likelihood may
be, assuming it is not 0, the posterior probability of the hypothesis is 0.
The fact that Bayesian calculations produce the same results in all three cases as
the more informal reasoning in section 4 both vindicates the Bayesian approach
and increases our confidence in the informal methods of the previous section;
there is, I believe, no vicious circularity in using the coincidence of results from
two distinct approaches as evidence boosting our confidence in both of them,
provided that neither approach is a logical consequence of the other.

6. An invalid argument schema
A tempting approach to our example is to note that the evidence reported in the
premisses rules out all but three hypotheses about the distribution of colours
among the 50 marbles in the jar:
1. All 50 marbles are clear glass.
2. 49 marbles are clear glass, and one is not clear glass.
3. 48 marbles are clear glass, and two are not clear glass.
One can then note that the evidence is much more likely to occur on the first
hypothesis than on the second and third.
On (1), the evidence is bound to be obtained.
On (2), the likelihood of the evidence is .04, as calculated in note 1 above.
On (3), the likelihood of the evidence is .00082, as calculated in note 2 above.

Since the result we observed was inevitable on the first hypothesis but highly
unlikely  on  each  of  the  only  two  alternative  hypotheses  consistent  with  our
evidence, does this result not make it highly probable that the first hypothesis is
true, and thus that the last two marbles in the jar are clear glass?
The  considerations  advanced  in  the  above  possible  solutions  show that  this
method of reasoning is invalid, that is, that the premises do not necessarily confer
a high probability on the conclusion of the argument. A Bayesian explanation of
why it is invalid is that it does not take into account the prior probability of the



three hypotheses. If our background information gives (1) a very much lower
prior probability than (2) or (3), the fact that the evidence is exactly what we
would expect on the basis of (1), but highly unlikely given (2) or (3), is not enough
to make (1) highly probable.[vii]
Thus,  the following argument schema,  though plausible,  must  be rejected as
invalid:
4. The observed results rule out all but n mutually exclusive hypotheses.
On one of these hypotheses, the observed results were bound to occur. On any of
the others, the observed results were highly improbable. Therefore, probably the
first hypothesis is correct.

7. Conclusion
The probability which the premisses of an argument confer on its conclusion is
the complement of the probability that the conclusion is false, given that  the
premises are true. But it is a mistake to identify this conditional probability with
the probability of a conjunction, the probability that the premises are true while
the conclusion is false. Such identification leads to serious errors in estimating
the degree of support of an argument’s conclusion by its premisses. Apparent
commission of this mistake in contemporary textbooks shows that one must apply
with care the procedure of estimating degree of support as the complement of the
likelihood that the conclusion is false, given that the premisses are true.
In an enumerative induction,  whether universal  or  particular,  the conditional
probability that a property observed in all examined members of a class or kind
belongs to all, or to one or more hitherto unexamined, individual members of the
class  or  kind  must  be  assigned  in  the  light  of  an  evaluator’s  background
information.
Uniformity of the examined instances of a kind with respect to some variable can
make it  certain,  highly  probable,  improbable  or  even impossible  that  all  the
instances of the kind, or the next examined instance(s), will be similar in that
respect, depending on an evaluator’s background information. In some cases the
background  information  does  not  permit  assignment  of  a  definite  epistemic
probability, or even a rough range of such probabilities, to the conclusion. In
general, a hypothesis is not necessarily made highly probable by an observed
result which is highly likely on that hypothesis but very unlikely on each of its
competitors; the prior probabilities of each of the hypotheses under consideration
must also be taken into account. [viii]



NOTES
i.  In  a  sequence  of  50  random selections  without  replacement  from  a  bag
containing 49 clear marbles and one non-clear marble, there is an equal chance of
the drawing of the non-clear marble occurring at any position in the sequence,
namely one out of 50; therefore, this is the probability that the drawing of the
non-clear marble will occur last in the sequence, and also the probability that the
drawing of the non-clear marble will occur second last. Since these events are
mutually exclusive, the probability that one or the other of them will occur is the
sum of the probability that each will occur, namely 2/50, or .04. This is the same
as the probability that, in a random selection without replacement, the first 48
marbles drawn will be clear glass. The same result follows if, using the general
multiplication rule for calculating the probability of a conjunction of events, we
multiply the probability of choosing a clear marble on the first draw (49/50), the
probability of choosing a clear marble on the second draw given that a clear
marble has been chosen on the first draw (48/49), and so on, up to the probability
of drawing a clear marble on the 48th draw if 47 clear marbles have been drawn
on the first 47 draws (2/3). Here and in other calculations in this paper, I use
Kolmogorov’s (1956/1933) axioms of the classical probability calculus. See note 3.
ii.  In  a  sequence  of  50  random selections  without  replacement  from a  bag
containing  48  clear  marbles  and  two  non-clear  marbles,  which  we  may  call
“marble A” and “marble B”, there is an equal chance of the drawing of marble A
occurring at any position in the sequence, namely one out of 50; therefore, this is
the probability that the drawing of the marble A will occur last in the sequence.
The probability that the drawing of the marble B will occur second last in the
sequence, given that the drawing of marble A occurs last, is one out of 49. By the
general multiplication rule, the probability of the conjunction of these events is
1/50 x 1/49, or 1/2450. By similar reasoning, the probability that the drawing of
marble A will occur second last in the sequence and the drawing of marble B last
is  also  1/2450.  Since  the  two  conjoint  events  are  mutually  exclusive,  the
probability  that  one  or  other  of  them  will  occur  is  the  sum  of  these  two
probabilities, i.e. 2/2450, or 1/1225, or .00082. This is the same as the probability
that, in a random selection without replacement, the first 48 marbles drawn will
be clear glass. The same result follows if, using the general multiplication rule for
calculating the probability of a conjunction of events, we multiply the probability
of choosing a clear marble on the first draw (48/50), the probability of choosing a
clear marble on the second draw given that a clear marble has been chosen on
the first draw (47/49), and so on, up to the probability of drawing a clear marble



on the 48th draw if 47 clear marbles have been drawn on the first 47 draws (1/3).
iii. Kolmogorov (1956/1933: 2) proposed in effect the following axioms for the
probability calculus (where p is the probability function and P and Q arbitrary
arguments, here construed as propositions, to which this function is applied):
(1) p(P) -> 0.
(2) If P is a tautology, then p(P) = 1.
(3) If P and Q are mutually exclusive, then p(P -> Q) = p(P) + p(Q).
Any function which satisfies these or an equivalent set of axioms is a probability
function in Kolmogorov’s sense.
iv. This result depends on the assumption that p(P) Õ 0. Given this assumption,
we have that:
1 = p(P)/p(P)
= p[(C or not C) & P]/p(P) [conjoining a tautology]
= p[(C & P) or (not C & P)]/p(P) [distribution of disjunction over conjunction]
= [p(C & P) + p(not C & P)]/p(P) [Kolmogorov axiom]
= p(C & P)/p(P) + p(not C & P)/p(P) [arithmetic]
= p (C|P) + p (not C|P) [definition of conditional probability].
Thus, subtracting from each side, 1 – p(not C|P) = p(C|P). This proof constitutes a
justification of Thomas’ (1997) test for degree of support, assuming that degree of
support is a probability function conforming to Kolmogorov’s axioms.
v. Recently Kaplan (1996: 16-18) has produced a general proof that our personal
degrees of confidence in the propositions we entertainought to conform to the
constraints of a probability function, on the basis of some plausible assumptions
about  the  structure  of  rational  preferences,  within  the  context  of  an
oversimplified postulate about basic values. Kaplan’s proof avoids some of the
unrealistic assumptions of the more crude “Dutch book” argument first advanced
by Ramsey (1990/1926) and found for example in Skyrms (1967). Savage (1972
[1954]) produced a more general proof than Kaplan’s, one which does not involve
any  constraints  on  what  an  agent  values.  As  Kaplan  (1996)  points  out,  the
probability calculus imposes only weak constraints on our assignment of degrees
of  confidence  to  propositions;  a  comprehensive  epistemology  would  impose
additional constraints.
vi. The complications in developing this idea are that an agent’s value system
does not simply equate value with money and that an agent may have an aversion
to, or a liking for, gambling which would distort the effect of their degree of
confidence in a proposition.
vii. One may appreciate this fact more readily if one expands the prior likelihood



p(E/K) in Bayes’ theorem, using the probability calculus, to get: [p(E/H & K) x
p(H/K)] + [p(E/~H & K) x (1 – p(H/K))]. Suppose the evidence E is highly likely if
the hypothesis is true but highly unlikely if the hypothesis is false. For example,
let  p(E/H & K) = 1 and p(E/~H & K) = .0008. Now suppose that the prior
probability of the hypothesis is very low; for example, let p(H/K) = .0001. Then
p(H/E & K) = p(H/K) x p(E/H & K) x {[p(E/H & K) x p(H/K)] + [p(E/~H & K) x (1 –
p(H/K))]\} = .0001 x 1 x {[1 x .0001] + [.0008 x (1 -.0001)] = .0001 x {.0001 +
[.0008 x .9999]\} = .0001 \’f7 \{.0001 + .0008\} = .0001 x .0009 = 1/9 = .1111.
So, even though the evidence is bound to occur if the hypothesis is true and
highly  unlikely  if  the  hypothesis  is  false,  the  posterior  probability  of  the
hypothesis, given the evidence, is only .1111.
viii. For their comments on earlier drafts of this paper, I would like to thank
Howard Simmons, Roderic Girle, Francisca Snoeck Henkemans, Sally Jackson,
Robert  H.  Ennis,  two  anonymous  referees  for  the  Canadian  Philosophical
Association,  and  above  all  Robert  C.  Pinto,  who  produced  a  challenging
commentary when I presented an earlier version of this paper at the University of
Windsor,  and  who  saved  me  from some  embarrassing  technical  errors.  The
aforementioned discussants  are  of  course  not  responsible  for  any  flaws  that
remain.
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