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Abstract: I propose a formal model of representation and numerical evaluation of
conductive  arguments.  Such  arguments  consist  not  only  of  pro-premises
supporting a claim, but also of contra-premises denying this claim. Offering a
simple  and  intuitive  alternative  to  accounts  developed  in  the  area  of
computational  models  of  argument,  the  proposed  model  recognizes  internal
structure of arguments, allows infinitely many degrees of acceptability, reflects
the cumulative nature of convergent reasoning, and enables to interpret attack
relation.
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1. Introduction
According  to  Wellman’s  original  definition  (1971)  the  conclusion  of  any
conductive argument is drawn inconclusively from its premises. Moreover, the
premises and the conclusion are about one and the same individual case, i.e. the
conclusion is drawn without appeal to any other case. Wellman also gave three
leading examples of conductive arguments, which determine three patterns of
conduction:

(1) You ought to help him for he has been very kind to you.
(2) You ought to take your son to the movie because you promised, and you have
nothing better to do this afternoon.
(3) Although your lawn needs cutting, you want to take your son to the movies
because the picture is ideal for children and will be gone by tomorrow.

Wellman’s  definition  was  an  object  of  many  interesting  views,  opinions  and
interpretations, mostly surveyed in (Blair & Johnson 2011). However, we do not
discuss this issue here, but we simply follow these authors who, as Walton &
Gordon  (2013),  focus  on  the  third  pattern  and  propose  to  take  conductive
arguments to be the same as pro-contra arguments. Such arguments, except of a
normal pro-premise or premises (The picture is ideal for children; It will be gone
by tomorrow), have also a con-premise or premises (Your lawn needs cutting).
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In the next two chapters we analyze conductive arguments from the logical point
of view. The conduction is regarded here as one act of reasoning, in which a
conclusion is drawn by the same time from both types of premises. In Chapter 2
we describe the structure and in Chapter 3 – a method of evaluation of conductive
arguments. This method is based on the model of argument proposed in (Selinger
2014). In Chapter 4 we introduce a dialectical component of the analysis. Namely,
by means of our model, we discuss definition of attack relation holding between
arguments.

2. Structure of conductive arguments
There are many ways of expressing conductive arguments in natural language.
Some of them are the following:

– Since A, even though B, therefore C.
– A, therefore C, although B.
– Although B, C because A.
– B, but (on the other hand) A, therefore C.
– Despite B, (we know that) A, therefore C.

Figure 1

In the above schemes the letter A represents a pro-premise (or pro-premises), B –
a con-premise (or con-premises) and C – a conclusion. It is worth to note that pro-
premises are presented as overcoming con-premises, so that an argument can be
accepted  if  they  really  do.  There  are  two  types  of  inference  in  conductive
arguments:  pro-premises  support  and  con-premises  deny  (contradict,  attack)
conclusions. They can be represented using the standard diagramming method.
Figure 1 shows the diagram of Wellman’s third example.

Relation of support is represented by the solid and relation of contradiction – by
the dashed line.[i] In order to reflect this duality in our formal model we follow
Walton & Gordon’s idea involving the assignment of Boolean values to these two
types of inference, however, we propose to use simpler formal structures than the
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so-called argument graphs (cf. Walton & Gordon 2013).

Let L be a language, i.e. a set of sentences. Sequents are all the tuples of the form
<P, c, d>, where P ⊆ L is a non-empty, finite set of sentences (premises), c ∈ L is
a single sentence (conclusion), and d is a Boolean value (1 in pro-sequents and 0
in con-sequents). An argument is simply any finite, non-empty set of sequents. If
an  argument  consists  of  only  one  sequent  then  it  will  be  called  an  atomic
argument.

The  premises  of  an  argument  are  all  the  premises  of  all  its  sequents.  The
conclusions of an argument are all the conclusions of all its sequents. The first
premises  are  those  premises,  which  are  not  the  conclusions,  and  the  final
conclusions  are  those  conclusions,  which  are  not  the  premises.  Finally,  the
intermediate conclusions are those sentences, which are both the conclusions and
the premises. A typical (abstract) argument structure is presented in Figure 2 by
the diagram corresponding to the set: {<{α1}, α5, 1>, <{α2}, α5, 0>, <{α3},
α5, 0>, <{α4}, α9, 1>, <{α5}, α13, 1>, <{α6}, α15, 1>, <{α7}, α15, 1>, <{α8},
α15, 0>, <{α9}, α16, 1>, <{α10}, α18, 1>, <{α11}, α18, 0>, <{α12, α13, α14},
α20, 1>, <{α15, α16}, α, 1>, <{α17}, α, 1>, <{α18, α19}, α, 0>, <{α20}, α,
0>}. This argument consists of 16 different sequents (10 of them are pro- and 6
are con-sequents), so it is the sum of the same number of atomic arguments. The
premises are all the sentences in the diagram except of α,  which is the final
conclusion; the conclusions are: α5, α9, α13, α15, α16, α18, α20, α;  the first
premises:  α1,  α2,  α3,  α4,  α6,  α7,  α8,  α10,  α11,  α12,  α14,  α17,  α19;  the
intermediate conclusions: α5, α9, α13, α15, α16, α18, α20.

Figure 2
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Figure 3

By the means of our formalism also atypical structures can be distinguished (cf.
Selinger 2014). Some of them are illustrated by Figure 3. Circular arguments can
have no first premises and/or no final conclusion (two examples in Figure 3 have
neither the first premises nor the final conclusion). They are interesting argument
structures, e.g. for those who deal with antinomies, however, we do not discuss
them, since they are mostly regarded as faulty. On the other hand, divergent
arguments and incoherent arguments can have more than one final conclusion.
They are not faulty (unless from some purely pragmatic point of view), but they
can  be  represented  as  the  sums  of  non-divergent  and  coherent  arguments.
Therefore,  when  discussing  evaluation  of  conductive  arguments  in  the  next
chapter, we focus on typical argument structures like that shown in Figure 2.

3. Evaluation of conductive arguments
The central question to be considered in this section is: how to transform the
values  of  first  premises  into  the  value  of  final  conclusion?  We  answer  this
question in three steps concerning evaluation of atomic, convergent and, finally,
conductive arguments.

First we introduce some basic notions. Each partial function v: L’→[0, 1], where
L’ ⊆ L, is an evaluation function. The value v(p) is the (degree of) acceptability of
p. We consider also a predefined function w: LχL→[0, 1]. The value w(c/p) is the
acceptability of c under the condition that v(p) = 1, so that the function w will be
called conditional acceptability.

We assume that L  contains the negation connective. If  the premises of some
sequent deny its conclusion c then evaluation of c will be based on evaluation of
the sentence ¬c in the corresponding pro-sequent, in which the same premises
support ¬c. Let us note that for a perfectly rational agent the condition v(¬c) = 1
– v(c) should be satisfied. This postulate will be useful to evaluate con-sequents.

Let v be a given evaluation function (we assume that v is fixed in the following
part of our exposition). By ∧P we denote the conjunction of all the sentences
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belonging to a finite, non-empty set P (if P is a singleton then ∧P is the sole
element of P). We assume that L contains the conjunction connective, and if P⊆
dom(v) then ∧P ∈dom(v).[ii] The value w(c/∧P) will be called the internal strength
of a pro-sequent <P, c, 1>, and the value w(¬c/∧P) – the internal strength of a
con-sequent <P, c, 0>.

Let A = {<P, c, d>} be an atomic argument, where P ∈ dom(v), c∉ dom(v), and d
is a Boolean value. The function vA is the following extension of v to the set
dom(v) ∪ {c}:

(4) If d = 1 then vA(c) = v(∧P)⋅w(c/∧P);
(5) If d = 0 then vA(c) = 1 – v(∧P)⋅w(¬c/∧P).

Thus the acceptability of the conclusion of an atomic argument under condition
that its  premises are fully  acceptable is  reduced proportionally  to the actual
acceptability of the premises. The value vA(c) will be called the (logical) strength
(or force) of an argument A. We will say that a pro-argument is acceptable iff its
strength is greater than ½, and a con-argument is acceptable iff its strength is
smaller than ½.

In  the  next  step  we  consider  evaluation  of  convergent  reasoning.  Since
convergent argumentation is used to cumulate the forces of different reasons
supporting (or denying) a claim we have to add these forces in a way adapted to
our scale. Strengths of pro- and con-components will be added separately in each
of both groups, independently of the other. Let A = A1 ∪ A2 , where both A1 and
A2 are acceptable arguments and they either consist of only pro- or of only con-
sequents having the same conclusion c. Let vA1(c) = a1 and vA2(c) = a2.

(6) If A1 and A2 are independent pro-arguments, and a1, a2 > ½, then vA(c) = a1
⊕a2;
(7) If A1 and A2 are independent con-arguments, and a1, a2 < ½, then vA(c) = 1 –
(1–a1)⊕ (1–a2), where x ⊕ y = 2•x + 2•y – 2•x•y ¬– 1.

In (Selinger 2014) we provide a justification of this algorithm, deriving it from the
principle (satisfied also by the algorithms given in (4) and (5)) that can be called
the principle of proportionality,  according to which the strength of argument
should vary proportionally to the values assigned to its components.  We also
discuss properties of the operation ⊕ (here let us only mention that it is both
commutative  and  associative,  therefore  the  strengths  of  any  number  of



converging,  independent  arguments  can  be  added  in  any  order).

Finally, we consider conductive reasoning. In order to compute the final value of a
conductive argument we will subtract the strength of its con- from the strength of
its pro-components in a way adapted to our scale. Let A = Apro  Acon, where
Apro consists only of pro-sequents and Acon only of con-sequents having the same
conclusion c.  We assume that  both groups of  arguments  are acceptable,  i.e.
vApro(c) > ½ and vAcon(c) < ½.

(8) If vApro(c) < 1, and vAcon(c) > 0, then vA(c) = vApro(c) + vAcon(c) ¬– ½;

The idea of this algorithm is illustrated by Figure 4. Since we want to know how
much pro-arguments outweigh con-arguments (or vice versa), we subtract the
value ½¬ –vAcon(c) represented by the interval [vAcon(c), ½] in this figure from
the value vApro(c) – ½ represented by the interval [½, vApro(c)]. In order to
finally receive the acceptability of c we add this differential to ½. Let us note that
the considered value is  directly  proportional  to  the acceptability  of  pro-  and
reversely proportional to the acceptability of con-arguments, so that the algorithm
satisfies the principle of proportionality.

Figure 4

The algorithm given by (8) assumes that both pro- and con-arguments are, as
defined by Wellman, inconclusive. However in real-life argumentation it happens,
for example in mathematical practice, that initial considerations concerning some
hypothesis, which are based on subjective premonitions, analogies, incomplete
calculations etc.,  are finally  overcame by a mathematical  proof.  Then all  the
objections raised originally are no longer significant, and the hypothesis becomes
a theorem. Therefore, if either pro- or con-arguments are conclusive, then so the
whole conductive argument is.

(9) If vApro(c) = 1, and vAcon(c) ≠ 0, then vA(c) = 1;
(10) If vApro(c) ≠ 1, and vAcon(c) = 0, then vA(c) = 0.

If both pro- and con-arguments happen to be conclusive then it is an evidence of a
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contradiction  in  underlying  knowledge,  and  the  initial  evaluation  function
requires revision. Therefore we claim that the values of such strongly antinomian
arguments cannot be found.

(11) If vApro(c) = 1, and vAcon(c) = 0, then vA(c) is not computable.

Otherwise, the strength of weakly antinomian arguments, which consist of equal
inconclusive components, can be computed as ½ using the algorithm given by (8).

In  order  to  complete  this  section  let  us  add  that  the  acceptability  of  the
conclusions of complex, multilevel argument structures, as the one represented
by Figure 3, can be calculated level by level using the algorithms (4) – (10). An
analogous process concerning only pro-arguments is described in (Selinger 2014).

4. Attack relation
Our goal is to define attack relation, which holds between arguments. For the
sake of simplicity we consider only attack relation restricted to the set of atomic
arguments. There are three components of atomic arguments that can be an
object of a possible attack: premises, inferences and conclusions. The latter is the
case of conduction. If we take into account a pro- and a con-argument, which have
the same conclusion, then the stronger of them attacks the weaker one (in the
case of an antinomy both arguments attack each other, so that it can be called the
mutual attack case).

(12) An argument A attacks (the conclusion of) an argument B iff A = {<P1, c,
d>}, B = {<P2, c, 1 – d >}, and either d = 0 and 1 – vA(c) ≤ vB(c), or d = 1 and 1
– vA(c) ≤ vB(c).

The second kind of attack is the attack on a premise. Obviously, it is effective if (i)
some premise of an attacked argument is shown to be not acceptable on the basis
of the remaining knowledge.

(13) An argument A attacks (a premise of) an argument B iff A = {<P1, c1, 0>}, B
= {<P2, c2, d>}, c1 < P2, and v’A(c1) ≤ ½, where v’ is the function obtained
from v by deleting c1 from its domain, i.e. dom(v’) = dom(v) – {c1}.

However,  with  respect  to  the  proposed  method  of  evaluation,  two  further
situations are possible:  (ii)  the premises of  an attacked argument considered
separately are acceptable, however their conjunction is not; (iii) the conjunction



of the premises of an attacked argument is acceptable and the internal strength
of its constituent (pro- or con-) sequent is greater than ½, but the product of these
values is  not.  Thus,  in view of  the evaluation method proposed here,  merely
weakening a premise can cause an effective attack, and the definition (13) should
be replaced by the following broader one.

(13’) An argument A attacks (a premise of) an argument B iff A = {<P1, c1, 0>},
B={<P2,  c2,  d>},  c1  ∉P2,  v ’A(c1)  ≤v(c1) ,  and  either  d  =  1  and
v’A(∧P2)∧w(c2/∧P2)∧ ½, or d = 0 and v’A(∧P2) w(~c2/∧P2) ⊆ ½, where v’ is the
function obtained from v by deleting c1 from its domain.

In order to consider attack on the relationship between the premises and the
conclusion  of  an  attacked  argument,  let  us  take  into  account  the  following
Pollock’s example of an undercutting defeater:

(14) The object looks red, thus it is red unless it is illuminated by a red light.

Figure 5

Following Toulmin’s terminology, the sentence The object is illuminated by a red
light will be called rebuttal. Let us note, that rebuttals are not con-premises, since
they do not entail  the negation of the conclusion (the fact that the object is
illuminated by a red light does not imply that the object is not red). Thus Pollock’s
example cannot be diagrammed like conductive arguments. Since it is an arrow
that represents the inference, which is denied by the rebuttal, rather the diagram
shown by Figure 5 seems to be relevant here.

However, structures such as the one in Figure 5 have no direct representation
within the formalism introduced in this paper to examine conductive reasoning. In
order to fill this gap we propose to add the fourth element, namely the set of
rebuttals, to the sequents considered so far. Such extended sequents will have the
form <P, c, d, R>, where R is the set of (linked) rebuttals.

Since our goal is to define attack relation as holding between arguments, we
propose  to  take  an  argument  without  rebuttals  (i.e.  with  the  empty  set  of
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rebuttals)  as  being  attacked  by  the  argument  with  the  same  premises  and
conclusion, but with a rebuttal added. For example (14) can be regarded as an
attacker of the simple argument

(15) The object looks red, thus it is red.

This argument (15) has the following representation: {<{The object looks red},
The object is red, 1, ∅>}, and its attacker (14): {<{The object looks red}, The
object is red, 1, {The object is illuminated by a red light}>}.  In general,  an
argument of the form {<P, c, d,∅>} can be attacked by any argument of the form
{<P, c, d, R>}. Effectiveness of this sort of attack depends on evaluation of such
arguments. It is not the aim of this paper to develop an evaluation method for
arguments with rebuttals systematically, however, let us note that the strength of
an argument {<P, c, d, R>}, where R ≠∅, seems to be strictly connected with the
strength of the corresponding argument {<P∪{~∧R}, c, d, ∅>}, which has an
empty set of rebuttals. For example, the strength of (14) depends on the strength
of the argument:

(16) The object looks red, and it is not illuminated by a red light, thus it is red.

If this argument is acceptable then so is its second premise (The object is not
illuminated by a red light), which is the negation of the rebuttal in (14). By the
same the rebuttal is not acceptable so that the attack on (15) cannot be effective.
Thus (16) cannot be acceptable if (14) attacks the inference of (15). In general, if
A = {<P, c, d, R>} attacks (the inference of) B = {<P, c, d,∅>}, then R≠∅ and A’
= {<P∪{~∧R}, c, d, ∅>} is not acceptable. Obviously, the converse does not
hold, because not any acceptable set of sentences can be a good rebuttal. If the
attack is to be effective the set R must be relevant to deny the inference in B. A
test of relevance that we propose is based on an observation concerning (15) and
(16). Intuitively, the inference in (16) is stronger than the inference in (15), i.e.
the internal strength of the sequent in (16) is greater than the internal strength of
the sequent in (15). This is because (16) assumes that a possible objection against
the inference in (15) has been overcome. Thus, the condition w(c/∧P∧~∧R) >
w(c/∧P)   can  be  proposed  to  determine  the  relevance  of  the  rebuttal  in  A.
Following  these  intuitions  we  recognize  arguments  overcoming  rebuttals  as
hybrid  arguments  in  the  sense  defined  by  Vorobej  (1995).  Such  arguments
contain a premise that strengthens them, but this premise does not work alone so
that it cannot be taken as the premise of a separate convergent reasoning (in (16)



such a premise is the sentence The object is not illuminated by a red light).

Summing  up,  we  claim that  (a)  non-acceptability  of  the  hybrid  counterparts
corresponding to arguments having rebuttals and (b) relevance of rebuttals are
necessary for attack on inference to be effective. However, we leave open the
question whether they are sufficient.

5. Conclusion
We  showed  how  the  model  of  representation  and  evaluation  of  arguments
elaborated in (Selinger 2014) can be enriched in order to cover the case of
conductive reasoning. The extended model allowed us to define in formal terms
two kinds of attack relation, namely attack on conclusion and attack on premise.
However, the definition of attack on inference requires further extension of the
model. In order to initiate more profound studies, we outlined a possible direction
of making such an extension.
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NOTES
i.  Let  us  note  that  Walton  & Gordon (2013)  interpret  both  pro-premises  as
supporting the claim independently of each other, and they draw separate arrows
connecting each pro-premise with the conclusion, which represent convergent
reasoning. However, it seems to be problematic whether the premise The picture
will  be  gone tomorrow alone (i.e.  without  any further  information about  the
movie) actually supports the conclusion.
ii. In order to avoid this assumption the acceptability of an independent set of
sentences can be calculated as the product of the values of its elements. Thus the
acceptability  of  a  conjunction  can  be  smaller  than  the  acceptability  of  its
components considered separately (cf. Selinger 2014).
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