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Abstract: This article provides an analysis and evaluation for probabilistic version
of arguments that deny the antecedent (DAp). Stressing the effects of premise
retraction vs. premise subtraction in a dialectical setting, the cogency of DAp
arguments is shown to depend on premises that normally remain implicit. The
evaluation remains restricted to a Pascalian notion of probability, which is briefly
compared  to  its  Baconian  variant.  Moreover,  DAp is  presented  as  an  exam-
question  plus  evaluation  that  can  be  deployed  as  a  learning  assessment-
instrument at graduate-level.
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1. Introduction
We treat the evaluation of DAp, a probabilistic version of what classical logic
correctly treats as the formal fallacy of denying the antecedent (DA), i.e., the
deductively invalid attempt at inferring the conclusion ~c from the premises a->c
and ~a, where a stands for antecedent, c for consequent, and ~ for negation.
Examples include:

1. Had my client been at the crime scene (a), then he would probably be guilty (c).
But he wasn’t (~a), so he probably isn’t (~c).
2. If the lights are on (a), then probably someone’s at home (c). But the lights are
out (~a), so probably no one is (~c).
3.  If  the product  sells  (a),  then our marketing measures should probably be
trusted (c). But it doesn’t (~a), so measures should be reviewed (~c).

Here,
(1) states a counterfactual conditional (“had”),
(2) an indicative one (“are”), and that in
(3)  might  even  sustain  a  deontic  reading  (“should”).  Disregarding  such
differences, we proceed to treat such DAp-arguments on the following schema, its
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formal version becoming clearer soon:

(DAp) If a then probably c. But not a, so probably not c.
Pf(c)=Pi(c|a)>Pi(c). But Pi(a)=0, so Pf(~c)>Pi(c).

As should be uncontroversial, if natural language instances of DAp instantiate a
probabilistically valid inference, or argument, then only if the relevant probability
values are right. A probabilistic version of modus ponens (MPp) can be stated as
the conditional probability of c given a, i.e., P(c|a), where P(c|a) directly depends
on P(~c|a) whenever P(c|a)=1−P(~c|a) holds, which is the complement-relation of
Pascalian probability (see Sect. 5.3 on the Baconian). A probabilistic version of
denying the antecedent (DAp), P(~c|~a), contrasts by depending on not one, but
three  values:  P(c|~a),  P(a),  P(c).  This  asymmetry  between  MPp  and  DAp  is
mirrored  by  one  between  probabilized  versions  of  modus  tollens  (MTp)  and
affirming the consequent (ACp), not being treated here (see Oaksford & Chater,
2008; 2009).

As will be seen below, since particularly P(c|~a) is necessary to evaluate DAp, but
need not be readily available from context, evaluations of DAp regularly remain
conditional on analysts’ assumptions with respect to P(c|~a). Our main objective
is to present one such assumption—broadly one of relevance, referred to as AR,
below—then trace AR’s effects on arguers’ dialectical commitments, in a context
where PROPONENT (PRO) argues MPp, and OPPONENT (OPP) responds with
DAp. On assumption, PRO can respond to OPP’s DAp either by retracting or
subtracting prior commitment; the first proves to be a delaying-tactic, and the
validity of OPP’s DAp is shown to depend on commitments reconstructed for PRO.

We introduce DAp as an exam-question (Sect. 2), then discuss the choice of logic
(3.1), the projection of linguistic forms onto logical forms (3.2), and the retraction
vs. subtraction distinction (3.3). Having provided an evaluation (4), we argue for
the plausibility of AR (5.1), explain how retraction delays interaction (5.2), and
briefly contrast this broadly Pascalian result with a Baconian notion of probability.
Our conclusions are in Sect. 6.

2. DAp as an exam-question
An evaluation of a probabilistic version of denying the antecedent (DAp) in a
dialectical setting might be assigned as an exam-question, such as the following,
where PRO argues MPp in lines 1 and 2, to which OPP responds, in line 3, by



denying PRO’s antecedent, and subsequently raising the claim in line 4, thus
arguing DAp. Assuming OPP to have the last word—OPP-statements “trump” PRO-
statements— PRO’s response options are limited to either of those in lines 5a or
5b, provided OPP is committed to PRO’s claim in line 1. So, in line 6, can PRO
reasonably deny OPP’s claim in line 4?

(1) PRO: a makes c more probable.
(2) PRO: a is the case.
(3) OPP: a is not the case.
(4) OPP: So, not c is more probable.
(5a) PRO: I retract (2).
(5b) PRO: I subtract (2), i.e., I agree to (3).
(6) PRO: But I disagree with (4).

Task: Assume that (3) trumps (2), i.e., that OPP has the last word, and that OPP
commits to (1). Evaluate line (6) as reasonable, or not, vis-à-vis (1-4), for both the
variants (5a) and (5b). Trace and justify additional assumptions.

We now present a task-solution that presupposes an evaluation of DAp vis-à-vis a
Pascalian notion of probability.

3. Evaluating DAp

3.1 Choice of Logic
As holds generally for argument-evaluation, an evaluation of DAp proceeds via a
projection of natural language material (aka linguistic form) onto a logical form,
itself provided through analyst-choice among available logics. The logic employed
below is inductive, consistent with the Kolmogorow-axiomatization of probability,
thus modeling a Pascalian notion of probability. As our evaluation of DAp holds
relative to this logic only, external criticism of the evaluation should elaborate on
inadequacies in the Pascalian notion of probability, if any (see Sect. 5.3).

3.2 Linguistic and Logical Form
The  application  of  logical  forms  (Lo-F)  to  linguistic  forms  (Li-F)  yields  a
reconstruction of Li-F at Lo-F level, technically a projection of the Li-F onto the
Lo-F. Analysts must subsequently ask: Is a particular Lo-F validity-assessable, i.e.,
is the projection complete? It will be only if the Li-F readily provides information
necessary to evaluate the Lo-F with respect to validity. Conversely, incomplete
projections  only  require  analysts  to  add  information  at  Lo-F  level[i].  Once



completed, the evaluative result may then be read-off, and transferred to the Li-F.
The yield is an evaluation conditional on information added.

To appreciate the projection of statements containing ‘probable’ and its cognates,
compare  the  L i -F  and  potent ia l  Lo-F  instances ,  be low,  where
Pi(c|a)>Pi(c)=1−Pi(~c) states the initial probability of c given a, Pi(c|a), to exceed
the initial probability of c, Pi(c), which equals one minus the probability of the
logical complement, ~c, since P(β)=1−P(~β) holds, and similarly for conditional
probabilities: P(β|α)=1−P(~β|α).

Above, we had seen PRO to utter the Li-F ‘a makes c more probable’ in line (1).
Onto which Lo-F, now, should this utterance be projected?

(i) a makes c more probable – Pi(c|a)>Pi(c)=1−Pi(~c)
(ii) a makes c more probable than not c. – Pi(c|a)>Pi(~c)=1−Pi(c)
(iii) … than not c given a. – Pi(c|a)>Pi(~c|a)=1−Pi(c|a)
(iv) … than not c given not a. – Pi(c|a)>Pi(~c|~a)=1−Pi(c|~a)

The Lo-F in line (i) yields perhaps the most faithful projection, as its content most
closely mirrors that of ‘a makes c more probable’. While (ii) to (iv) need not be
implausible candidates, they nevertheless add content to PRO’s utterances. We
return to (i) in Sect. 4.

Except for the point-probability Pi(c)=Pi(~c)=0.5, the utterances in (i) and (ii)
mutually and directly imply their negations. After all, (i) compares Pi(c|a) to Pi(c),
so Pi(c|a) is also compared to Pi(~c), the latter being the complement of Pi(c), as
in (ii). Similarly, (iii) compares Pi(c|a), again merely internally, to its complement,
Pi(~c|a). In contrast, (iv) compares Pi(c|a) to Pi(~c|~a), which, importantly, does
not directly dependent on Pi(c|a). Note that Pi(~c|~a) had, in Sect. 1, been seen
to state a probabilistic version of denying the antecedent (DAP).

On the assumption that contents expressed by Pi(a), Pi(c), Pi(c|a), and Pi(c|~a)
are contingent, when Pi(c|~a) cannot simply be obtained from PRO’s Li-F, then
Pi(c|~a) should be stipulated in view of PRO’s commitments with respect to Pi(a),
Pi(c), Pi(c|a), effectively compensating for cases where PRO avoids an explicit
commitment with respect to Pi(c|~a). Sect. 4 will identify one such compensation,
consisting in an assumption of relevance assumption (AR). First, we turn to PRO’s
dialectical options in lines 5a and 5b (see Sect. 2).



3.3 Retraction vs. Subtraction
A non-formal version of the retraction vs. subtraction distinction is found, among
others, in Godden & Walton (2004). In probabilistic terms, to retract amounts to
PRO no longer holding a commitment with respect to the probability of a. As we
now argue, retraction would only be represented unfaithfully as a PRO-update to
the unspecific commitment Pf(a)=[0,1], where the subscripted ‘f’ indicates the
final  probability  after  retraction.  To subtract,  in  contrast,  amounts  to  having
stated that a is false, and can be represented as a PRO-update to the specific
commitment P(~a)=1.

One may assume that, having used MPP at time t0, PRO is at time t1 committed to
Pi(c|a)>Pi(c) and Pi(a)=1. After retraction, her commitments at t2 could update to
Pi(c) and Pf(a)=[0,1], where [0,1] marks the closed interval from zero to one,
including the end-points, and Pi(c) is the prior probability of c. Alternatively, at t2,
PRO’s  commitments  could  update  merely  to  Pi(c).  In  the  first  case,  given
Pf(a)=[0,1], PRO cannot meaningfully maintain a commitment to Pi(c|a)>Pi(c), for
if  Pf(a)=[0,1]  and Pi(c|a)>Pi(c)  together  entail  anything,  then they entail  the
probability of c given a to be greater than the probability of c, for any value of
P(a)=1−P(~a)=[0,1]. But this is incompatible with the probability of a impacting
on the probability of c. So a could not, in any standard sense, remain relevant to
c,  for  a  would  now  raise  the  probability  of  c  come  what  may,  given  any
probability-value  of  a,  including 0  and 1  (see  Sect.  5.2).  To  avoid  as  much,
retraction should be modelled such that, at t2, PRO updates her commitments
merely to Pi(c).

After subtraction, PRO’s commitments with respect to a have been updated from
Pi(c|a)>Pi(c) and Pf(a)=1, at t1, to Pi(c|a)>Pi(c) and Pf(~a)=1, at t2. They now
starkly contrast with PRO’s commitment at t1. Such flipping—aka ‘take it back
and  claim the  opposite’—makes  it  conditionally  relevant  for  PRO to  incur  a
comparative commitment with respect to Pi(c|~a) vs. Pi(c). Note that this is unlike
the case of retraction. In both cases, of course, OPP may well ask PRO to compare
Pi(c|~a) with Pi(c). In the exam-case (Sect. 2), this comparison was not made.

What  may one reasonably  assume about  this  comparison on behalf  of  PRO?
Introduced as part of the evaluation of DAP in the next section, the assumption
(AR) compares Pi(c|~a) with Pi(c). Along with other assumptions, AR will be seen
to yield the very conclusion OPP seeks to establish with her DAP argument:
Pf(~c)>Pf(c).



4. Conditional evaluation of DAp

4.1 PROPONENT and OPPONENT commitments
In evaluating the OPPONENT’s DAp, one supposes that ‘if a then c’, i.e., a→c, can
be interpreted probabilistically such that P(a→c)=P(c|a), an assumption referred
to as ‘the equation’ (Oaksford & Chater, 2008; 2009). One should start from the
weakest possible PROPONENT-commitment in this context (see Sect. 3.2), namely
that a provides some support to c, as expressed in (7). Again, Pi(c) marks the
initial or prior, and Pf(c) the final or posterior probability.

(7) Pf(c)=Pi(c|a)>Pi(c) – [PROPONENT-commitment][ii]

As we saw, if inductive support is measured over the closed interval from 0 to 1,
and reflects a Pascalian notion of probability, then a degree of support for a
proposition α entails that of its complement via P(α)=1−P(~α), and likewise for
conditional probabilities via P(α|β)=1−P(~α|β). Moreover, Pi(c|a) is given by the
principle of conditionalization (PC), aka the definition of conditional probability:

(PC) Pi(c|a)=P(c&a) / P(a) – [definition of conditional probability]

Since P(c&a)=P(a|c)P(c), by substitution, the PC yields Bayes’ theorem (BT)[iii],
to which we return in Sect. 4.3:

(BT) P(c|a)=(P(a|c)P(c)) / P(a) – [Bayes’ theorem]

With retraction (see Sect. 3.3), the support for c in the absence of a can only
depend on the prior probability Pi(c).  So, if  conditionalization on a results in
Pi(c|a)>Pi(c), as stated in (7), then retracting a leaves the probability of c at its
prior value, Pi(c). This is what Godden and Walton’s (2004) claim—that retraction
does not incur new commitments—amounts to when using probabilities. As OPP
was to have the “last word” (see Sect. 2), one is concerned not with retraction,
but with subtraction of a, i.e., conditionalization on ~a. Hence, OPP is committed
to (8), which says that ~a is negatively relevant to c, as ~a makes ~c more
probable than it was initially:

(8) Pf(~c)=Pi(~c|~a)>Pi(~c) – [OPPONENT-commitment]
Already  in  genuinely  probabilistic  contexts,  where  0<P(α)=1−P(~α)<1,  the
inequalities in (7) and (8) depend on suitable probability values.  As the next
subsection shows, such values need not be readily available in a given natural



language context.

4.2 Finding Pi(~a|~c)
To illustrate the issue, assume that—unlike the extremal cases in Sect. 2, where
either P(a)=0 or P(a)=1—PROP assigns 0.5<Pi(a)<1, so that a is more probable
than not, and moreover choses the likelihood, Pi(a|c), such that Pi(c|a) is rendered
sufficiently high for the purpose at hand, i.e., beyond some threshold, t, to which
we return in the next section. But assume also that PROP remains uncommitted to
the exact value of Pi(c). Therefore, Pi(c) need not be fixed, but can in fact range
over the interval satisfying Pi(c|a)>Pi(c) given the chosen likelihood, Pi(a|c). To
reach a probabilized dialectical scenario, assume finally that PRO responds to
OPP’s objection by adopting OPP’s claim that 0.5<Pi(~a)<1. When evaluating this
move, one must conditionalize on Pi(~a) to find Pi(~c|~a). Because of PRO’s loose
stance  with  respect  to  Pi(c)  before  hearing  OPP’s  objection,  however,  that
Pi(a)>0.5, and that Pi(c|a) were deemed sufficiently high simply does not entail a
definite  value for  Pi(~a|~c),  nor  only  values that—upon conditionalization on
~a—leave Pi(~c|~a) sufficiently low (see Sober, 2002). But some such discrete
value  is  required  to  calculate  with  this  instance  of  Bayes’  theorem:
Pf(~c|~a)=(Pi(~a|~c)Pi(~c))/Pi(~a). See Oaksford and Chater (2008; 2009) and
Wagner (2004) for an analytical characterization of the bounds that arise when
letting  0.5<P(c|a),P(~c|~a)<1,  so  that  both  terms  count  as  probabilistically
supported, or confirmed, if 0.5<P(a),P(~a)<1.

The commitments in (7) and (8) are here treated as contingencies, and so do not
express general truths about probabilistic support relations between antecedents
and  consequents.  Hence,  particularly  OPP’s  desired  conclusion—that  ~c  is
sufficiently  probable  given  ~a—won’t  follow  from  any  old  assignment  of
probability  values,  even  if  0<P(α)=1−P(~α)<1.  The  next  subsection  supplies
information  that  leaves  OPP’s  claim—that  Pf(~c|~a)>Pf(c|~a)—acceptable
through  introducing  the  assumption  AR  on  behalf  of  PRO.

4.3 Bayes’ Theorem, Jeffrey Conditionalization, and AR
In our example in Sect. 2, Pi(a) and Pi(~a) were assigned the values zero or one.
In both extremal cases, however, premise subtraction remains ill-defined in the
context  of  Bayes’  theorem.  After  all,  when  P(a)=1,  then  a  is  treated  as
indubitable, upon which the theorem ceases to offer guidance for the subtraction
of a; likewise when P(~a)=1. In fact, subtraction of what is beyond doubt does
widely count as an arational move in this context, a move BT does not guide one



way  or  another.  Therefore,  rather  than  employ  BT,  one  can  turn  to  Jeffrey
conditionalization (JC) in order to address premise subtraction (see, e.g., Jeffrey,
2004):

(JC) Pf(c)=Pi(c|a)Pf(a)+Pi(c|~a)Pf(~a) – [Jeffrey conditionalization][iv]

In our case, when the proponent claims that a makes c more probable (see Sect.
2), she can be assumed committed to Pf(c)>t³Pi(c), where t is a threshold given by
a probability value arbitrarily smaller than Pf(c), and at least as large as Pi(c).
Further, if Pf(a)=1 and so Pf(~a)=0, i.e., a is true, then (JC) reduces to its left
hand term:

(9) Pf(c)=Pi(c|a)Pf(a)>t

As an assumption of relevance (AR) that will be crucial for our evaluation, the
proponent’s initial claim—that a raises the probability of c to a value above some
threshold t—may be assumed to entail the following:

(AR) If ~a (also) raises the probability of c, then at most to t, i.e., Pi(c|~a)£t.

Sect. 5.1 will argue why it is reasonable to assume AR on behalf of Pro. Let us
first complete the evaluation of DAp.

4.4 Evaluative result
When, per our example-case, a is subtracted because a is deemed false, i.e.,
Pf(~a)=1, and so Pf(a)=0, then—in analogy to (9)—JC reduces to its right hand
term:

(10) Pf(c)=Pi(c|~a)Pf(~a)£t

Because  Pi(c|~a)=1−Pi(~c|~a),  it  follows  for  the  standard  threshold  of
probabilistic support t=0.5 that, upon subtracting a, i.e., Pf(~a)=1, the value of
Pf(c) falls below t only if Pi(~c|~a)>t.[v] The evaluation, therefore, depends not
only on the initial assumption Pf(c)>Pi(c), as stated in (5), but additionally on
AR—i.e., Pi(c|~a)£t—and t=0.5, which together effectively state OPP’s desired
conclusion (i.e., line 4 in Sect. 2). After all, once Pi(c|~a) falls to, or below, the
value 0.5, then c can no longer receive sufficient support in the event that ~a,
since—analogously  to  (9)—we  have  it  that  Pf(~c)=Pi(~c|~a)P(~a),  and  so  if
P(~a)=1, then Pf(~c)=Pi(~c|~a).



Hence,  rather than Pf(c)=Pi(c|a)>Pi(c),  as in (7),  PRO would have had to be
committed to:

(11) Pf(c)=Pi(c|a)>t>Pi(c) and Pi(c|~a)£t, for t=0.5,

for OPP to establish probabilistic support for ~c by subtracting a. Therefore, with
a view to the example in Sect. 2, (5b) is unreasonable given AR. In contrast, line
(5a) is at least not immediately unreasonable. But, as Sect. 5.2 argues, (5a) delays
the evaluation that becomes available under AR.

5. Discussion
This section briefly discusses why AR is reasonable, shows retraction to be a
delaying-tactic, and inquires whether the evaluative result transfers to a non-
Pascalian notion of probability.

5.1 The reasonability of AR
Recall that, because the example in Sect. 2 lacked information on Pi(c|~a) that
our inductive logic did require in order to evaluate DAp, Sect. 4.3 had introduced
an assumption of relevance (AR) on behalf of PRO, namely Pi(c|~a)£t for t=0.5.
The evaluative result (Sect. 4.4) was then seen to depend on AR. Evaluating AR
requires considering whether PRO can deny AR, provided she is committed, at t1,
to both Pf(c)=Pi(c|a)>Pi(c) and Pi(a)=1, then retracts only the latter commitment
by  updating,  at  t2,  to  P(~a)=1  (see  Sect.  3.3).  A  straightforward  way  of
addressing this consists in considering if PRO remains consistent were she to
deny AR. As we saw, Pi(c|a)>Pi(c) expresses that a is positively relevant to c. So,
at t1, does PRO incur a contradiction were she to commit to Pi(c|a)>Pi(c), but
reject Pi(c|~a)£Pi(c)?

What if PRO were to reject Pi(c|~a)£Pi(c), i.e., accept Pi(c|~a)>Pi(c), and so be
committed both to Pi(c|a)>Pi(c) and to Pi(c|~a)>Pi(c)—in words: both a and ~a
raise the probability  of  c.  In  this  case,  were a and ~a to provide the same
probabilistic support to c, i.e., Pi(c|a)=Pi(c|~a)>Pi(c), then PRO would well have
avoided the commitment that c and a are probabilistically independent—which is
expressed by  Pi(c|a)=Pi(~c|a).  But  without  the  assumption AR qualifying the
support that a and ~a lend to c as a differentially large support, the question
would arise why PRO had initially offered a in support of c, when ~a could have
served as well. Hence, not so much to remain consistent, but to remain relevant:
at t1, if ~a shall provide some support to ~c, then such support should be lower



than the support that a confers onto c, exactly as expressed by AR.

In contrast, interpreting PRO’s Li-F ‘a makes c more probable’ from the outset to
mean ‘a makes c more probable than not c given a’,  i.e.,  Pf(c|a)>t£Pf(~c|a),
necessitates setting the threshold to t=0.5, since Pf(c|a)=1−Pf(~c|a). Moreover, if
P(~a)=1, then OPP’s conclusion Pf(~c|~a) takes a value greater than t, which in
turn shows how PRO’s subtraction of a, i.e.,  the change in commitment from
P(a)=1 to P(a)=0, establishes, or concedes, the cogency of OPP’s DAp.

Besides AR, the two complement-relations P(α)=1−P(~α) and P(β|α)=1−P(~β|α)
for conditional probabilities remain crucial to our evaluation, because information
not provided at Li-F was inferred by means of these relations. We discuss both in
Sect. 5.3, and now proceed to argue that, here, retraction is at best a delaying-
tactic.

5.2 Retraction as a delaying-tactic
In Sect. 3.3, we had seen that retraction amounts to avoiding a commitment with
respect to the probability of a, including a lose commitment such as P(a)=[0,1].
Assume, then, that PRO has successfully avoided as much, and so is committed, at
t2, merely to Pi(c|a)>Pi(c), and Pi(c). As argued above, this set of commitments
allows PRO to disagree, in line (6) of Sect. 2, with OPP’s claim that Pf(~c)>Pf(c).
The  disagreement  is  not  immediately  unreasonable  because,  after  retraction,
information necessary for OPP—and for analysts—to establish Pf(~c)>Pf(c) was
seen to be unforthcoming from PRO’s commitments.

As PRO had, at t1, claimed that P(a)=1, even after retraction, OPP can demand
that  PRO  commit  to  some  comparison  of  Pi(c|a)  with  Pi(c|~a)  vis-à-vis  the
threshold t=0.5,  provided this OPP-move is not otherwise blocked. Moreover,
provided that PRO would act in an irrelevant manner were she to reply with a
comparison other than AR—as argued in Sect. 5.1—then OPP can still establish
her claim in line (6). So when interlocutors can elicit commitments and criticize
irrelevant  claims,  retraction  merely  delays  the  OPPONENT’s  conclusion,
minimally  by  one  turn.

These considerations all highlight the role of the assumption AR. As AR compares
Pi(c|~a) and Pi(~c|~a), being terms directly related via the complement principle
Pi(c|~a)=1−Pi(~c|~a), it should be of interest to compare this evaluation with a
Baconian notion of probability, where this principle does not hold.



5.3 Baconian probability
Jonathan  L.  Cohen  (1980)  has  coined  the  term  ‘Baconian’  for  a  notion  of
probability  whose  central  assumptions  differ  from  those  of  its  Pascalian
counterpart.  Crucially,  Baconian  probabilities  are  non-additive;  therefore,  the
above  complement-relations  do  not  generally  hold,  and  also  conditional
probabilities  may  be  defined  differently.  Being  ordinal  values,  Baconian
probabilities can be compared but,  unlike Pascalian probabilities,  one cannot
readily add, subtract, multiply, or divide them (see Cohen, 1980; Schum, 1991;
Hajek & Hall, 2002; Hájek, 2012; Spohn 2012).

For our case, which was seen to depend on AR, it may thus well be the case that,
for instance, Pi(c|a)=0.8>Pi(c)=0.5, while nevertheless Pi(~c|a)=0, rather than
Pi(~c|a)=0.2, as the complement-principle of the Pascalian calculus has it. So, a
may make c more probable to an extent e, without it being entailed that the
probability of ~c given a is calculated as 1−e. The scale of Pascalian probability
runs upward from disproof to proof, while the Baconian scale runs upward from
non-proof, or no evidence, to proof (see Cohen, 1980). Evidence for α having been
provided thus remains compatible with no evidence having been provided for its
negation, ~α.

Baconian probability is particularly applicable to the legal domain. For instance,
the probability that a defendant is guilty may be assumed to be determined by
evidence typically provided by the prosecution. Is the prosecutor’s evidence less
than conclusive, however, then whatever evidence is lacking will, on the Pascalian
notion, entail a corresponding disproof of the defendant’s guilt (compared the
first example in Sect. 1). On the Baconian notion, in contrast, the prosecutor’s
evidence in support of the defendant’s guilt compares independently to evidence
forwarded on behalf of the defendant’s innocence, or lack thereof. In the absence
of  such  evidence,  then,  the  probability  of  the  defendant’s  innocence  would
(hopefully) register at 0. And if disproving evidence is forwarded, the probability
of the defendant’s innocence (hopefully) registers at values independent of the
probability of the defendant’s guilt.

We cannot claim to have done any justice to the Baconian notion of probability,
but  may nevertheless  conclude  that  the  evaluative  result  (Sect.  4)  need not
without further ado transfer to a non-Pascalian notion of probability. So analysts
are required to decide, for the particular case and in view of the natural language
material,  whether  a  Baconian  or  a  Pascalian  notion  of  probability  is  more



appropriate.

6. Conclusion
Presupposing a Pascalian notion of probability, we have provided an analysis and
evaluation for probabilistic version of arguments that deny the antecedent (DAp).
Stressing the effects of premise retraction vs. premise subtraction in a dialectical
setting, the cogency of DAp arguments was shown to depend on a premise that
normally remains implicit, namely Pi(c|~a)£t, for t=0.5, which we had identified
as a relevance assumption.  Moreover,  premise retraction was shown to be a
delaying-tactic  as  long as the opponent can ask the proponent to incur new
commitments. Generally, the cogency of DAp arguments was seen to depend on
commitments ascribed to the proponent.  As we have stressed,  the evaluative
result  is  restricted  to  a  Pascalian  notion  of  probability,  which  was  briefly
compared to its Baconian variant. On these qualifications, the abstract version of
DAp presented in Sect. 2 can be deployed as a learning assessment-instrument at
graduate-level.
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NOTES
i.  Other  tweaks  are  subtracting  information,  and  changing  its  order
(permutation);  both  modifications,  however,  normally  presuppose  possessing
information that is necessary for an evaluation.
ii. (7) leaves open the exact degree of support; one of its measures, S(c|a), can be
defined as:  S(c|a)=Pi(c|a)−Pi(c)>0 (Korb,  2003, 44;  Howson & Urbach, 1993,
117).
iii. Dropping the subscripts, BT comes in two equivalent versions:
(BT) P(c|a)=(P(a|c)P(c)) / P(a)
(BT*) P(c|a)=P(a|c)P(c) / (P(a|c)P(c)+P(a|~c)P(~c))



One reaches BT* by substitution in BT, since P(a)=P(a|c)P(c)+P(a|~c)P(~c). Here,
P(a|c) and P(a|~c) express likelihoods, namely the probability of a given c, and the
probability of a given ~c, respectively. P(a|c) can be read as the impact of a on
P(c). P(a|~c) is also known as the false positive rate. To express the classically
valid modus pones inference with (BT), if aÉc is true, then P(c|a)=1. So the rate of
exceptions, P(~c|a),  is zero since P(c|a)=1−P(~c|a).  See Oaksford and Chater
(2008; 2009).
iv.  (JC)  has the posterior  probability  of  the conclusion,  Pf(c),  depend on the
posterior  probability  of  the  antecedent,  Pf(a)=1−Pf(~a),  as  well  as  the  prior
probabilities  Pi(c|a)  and  Pi(c|~a),  the  latter  two  terms  being  mutually
independent. Jeffrey conditionalization generalizes the Bayesian theorem, where
(BT) corresponds to the limiting case that arises by setting one of JC’s summands
t o  1 .  T o  v e r i f y ,  r e c a l l  t h a t  P f ( c ) = P i ( c | a ) .  S i n c e
P(a&c)=P(c&a)=P(a|c)P(c)=P(c|a)P(a), by substitution, if Pf(a)=1, then the
expression  Pf(c)=Pi(c|a)Pf(a)+Pi(c|~a)Pf(~a)  reduces  to  Pf(c)=Pf(a&c),  so
Pf(c|a)=P(a|c)P(c)/P(a)  becomes  Pf(c|a)=Pf(a&c).  The  case  is  analogous  when
Pf(~a)=1.
v. To assume that Pi(~c|~a)>t for t=0.5 amounts to a probabilized version of the
conditional perfection strategy—where, as part of the analysis, -> is perfected to
<->—for this  very assumption renders the conditional  ‘a  then c’  convertible,
probabilistically speaking.

References
Cohen,  J.  L.  (1980).  Some historical  remarks  on the  Baconian conception of
probability. Journal of the History of Ideas, 41 (2), 219-231.
Godden,  D.,  &  Walton,  D.  (2004).  Denying  the  antecedent  as  a  legitimate
argumentative strategy: a dialectical model. Informal Logic, 24, 219-243.
Hajek, A., & Hall, N. (2002). Induction and Probability. In: P. Machamer & M.
Silberstein  (Eds.),  The  Blackwell  Guide  to  the  Philosophy  of  Science  (pp.
149-172). Oxford, UK: Blackwell.
Hájek, A. (2012). Interpretations of probability. In: E. N. Zalta (Ed.), The Stanford
Encyclopedia of Philosophy (Winter 2012 Edition),
<http://plato.stanford.edu/archives/win2012/entries/probability-interpret/>  (4
Sept  2014).
Howson, C., & Urbach, P. (1993). Scientific reasoning: the Bayesian approach,
2nd ed. La Salle, IL: Open Court.
Jeffrey, R. (2004). Subjective probability: The real thing. Cambridge: Cambridge



University Press.
Korb, K. (2003). Bayesian informal logic and fallacy. Informal Logic, 23, 41-70.
Schum, D. A. (1991). Jonathan Cohen and Thomas Bayes on the analysis of chains
of reasoning. In: E. Eells & T. Maruszewski (Eds.), Probability and Rationality:
Studies on L. Jonathan Cohen’s Philosophy of Science. Amsterdam: Rodopi.
Spohn, W. (2012). The laws of belief. Oxford: Oxford University Press.
Oaksford, M., & Chater, N. (2008). Probability logic and the modus ponens –
modus tollens asymmetry in conditional inference. In: N. Chater & M. Oaksford
(Eds.),  The Probabilistic  Mind:  Prospects  for  Bayesian Cognitive Science  (pp.
97-120). Oxford: Oxford University Press.
Oaksford,  M.,  &  Chater,  N.  (2009).  Précis  of  Bayesian  rationality:  The
probabilistic approach to human reasoning. Behavioural and Brain Sciences, 32,
69-120.
Sober,  E.  (2002).  Intelligent  design  and  probability  reasoning.  International
Journal for Philosophy of Religion, 52, 65-80.
Wagner, C.G. (2004). Modus tollens probabilized. British Journal for Philosophy of
Science, 55, 747-753.


